نتایج جستجو برای: strongly blended dually quasi
تعداد نتایج: 313972 فیلتر نتایج به سال:
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
this paper is the first of a two part series. in this paper, we first prove that the variety of dually quasi-de morgan stone semi-heyting algebras of level 1 satisfies the strongly blended $lor$-de morgan law introduced in cite{sa12}. then, using this result and the results of cite{sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
this paper is the second of a two part series. in this part, we prove, using the description of simples obtained in part i, that the variety $mathbf{rdqdstsh_1}$ of regular dually quasi-de morgan stone semi-heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{rdqdstsh_1}$-chains and the variety of dually quasi-de morgan boolean semi-heyting algebras--...
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended ∨-De Morgan law introduced in [20]. Then, using this result and the results of [20], we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) in the variety o...
The variety DQD of semi-Heyting algebras with a weak negation, called dually quasi-De Morgan operation, and several of its subvarieties were investigated in the series [31], [32], [33], and [34]. In this paper we define and investigate a new subvariety JID of DQD, called “JI-distributive, dually quasi-De Morgan semi-Heyting algebras”, defined by the identity: x ∨ (y → z) ≈ (x ∨ y) → (x ∨ z), as...
Following Jiang Guanghao and Xu Luoshan’s concept of conjugative, dually conjugative, normal and dually normal relations on sets, the concept of quasi-regular relations is introduced. Characterizations of quasi-regular relations are obtained and it is shown when an anti-order relation is quasiregular. Some nontrivial examples of quasi-regular relations are given. At the end we introduce dually ...
A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...
a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
The main purpose of this paper is to axiomatize the join of the variety DPCSHC of dually pseudocomplemented semi-Heyting algebras generated by chains and the variety generated by D2, the De Morgan expansion of the four element Boolean Heyting algebra. Toward this end, we first introduce the variety DQDLNSH of dually quasi-De Morgan linear semi-Heyting algebras defined by the linearity axiom and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید