In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Authors

  • Mansoureh Movahedin Anatomical Sciences Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran.
  • Mehrdad Faizi Pharmacology and Toxicology Department, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Saeed Semnanian Physiology Department, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran.
Abstract:

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic–like cells in vitro. Neural stem cells were harvested from SVZ of newborn rat brains. The cells were cultured in DMEM12, B-27 supplemented with 20 ng/ ml (hFGF) and 20 ng/ ml (EGF) for 2 weeks. Neurospheres were differentiated in neurobasal medium, B-27 supplemented with BDNF (50 ng/ ml) and GDNF (30 ng/ ml) for 3 and 5 days. Cell culture techniques and immunocytochemistry were applied to examine neurospheres and tyrosine hydroxylase positive cells. The number of neurites was counted 3 and 5 days after the induction of differentiation. Nestin and Sox2 were expressed in NSCs and neurospheres. NSCs were differentiated into noradrenergic- like cells (NACs). Tyrosine hydroxylase was detected in these cells. The results of NSCs differentiation for 5 days culture had a significant decrease (P≤0.05) in the number of TH positive cells with one or two neurite per cell, and a significant increase (P≤0.05) in the number of TH positive cells with three, four or more neurites per cell, compared with 3 days culture. Based on these results, NSCs have the ability to differentiate into noradrenergic cells in the presence of BDNF and GDNF growth factors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

in vitro differentiation of neural stem cells into noradrenergic-like cells

neural stem cells (nscs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (svz) and the hippocampus of the adult brain. nscs can give rise to neurons, astrocytes and oligodendrocytes. the aim of this study was to differentiate neural stem cells into noradrenergic–like cells in...

full text

Effect of Neurotrophin-3 on Differentiation of Rat Hair Follicle Stem Cells into Neural Like Cells

Purpose: The aim of this study was to evaluate the effect of NT-3 on the decrease of the differentiation time of bulge stem cells of rat hair follicle from neuron like cells.Materials and Methods: The bulge region of the rat whisker was isolated from and cultured in DMEM/F12 supplemented with epidermal growth factor (EGF) in 3 groups for 7, 8 and 9 days .Then 10 ng/ml NT-3 was added to each gro...

full text

In Vitro Differentiation of Neural Stem Cells into Noradrenergic-Like Cells

Neural stem cells (NSCs) as a heterogeneous multipotent and self- renewal population are found in different areas in the developing mammalian nervous system, as well as the sub-ventricular zone (SVZ) and the hippocampus of the adult brain. NSCs can give rise to neurons, astrocytes and oligodendrocytes. The aim of this study was to differentiate neural stem cells into noradrenergic-like cells in...

full text

Effect of Mouse Liver Extract on in Vitro Differentiation of Amniotic Membrane Stem Cells into Hepatocyte-Like Cells

ABSTRACT           Background and Objective: Multipotent placental amniotic membrane mesenchymal stem cells (MSCs) are capable of differentiating into specialized tissues under different conditions. The aim of this study was to induce differentiation of placental amniotic membrane MSCs from NMRI mouse into hepatocytes using liver extract. &nb...

full text

Differentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study

Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities.  As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue None

pages  22- 31

publication date 2015-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023