﻿ A note on the Roman domatic number of a digraph

A note on the Roman domatic number of a digraph

چکیده

Roman dominating function} on a digraph \$D\$ with vertex set \$V(D)\$ is a labeling\$fcolon V(D)to {0, 1, 2}\$such that every vertex with label \$0\$ has an in-neighbor with label \$2\$. A set \${f_1,f_2,ldots,f_d}\$ ofRoman dominating functions on \$D\$ with the property that \$sum_{i=1}^d f_i(v)le 2\$ for each \$vin V(D)\$,is called a {em Roman dominating family} (of functions) on \$D\$. The maximum number of functions in aRoman dominating family on \$D\$ is the {em Roman domatic number} of \$D\$, denoted by \$d_{R}(D)\$.In this note, we study the Roman domatic number in digraphs, and we present some sharpbounds for \$d_{R}(D)\$. In addition, we determine the Roman domatic number of some digraphs.Some of our results are extensions of well-known properties of the Roman domatic number ofundirected graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Italian domatic number of a digraph

An {em Italian dominating function} on a digraph \$D\$ with vertex set \$V(D)\$ is defined as a function\$fcolon V(D)to {0, 1, 2}\$ such that every vertex \$vin V(D)\$ with \$f(v)=0\$ has at least two in-neighborsassigned 1 under \$f\$ or one in-neighbor \$w\$ with \$f(w)=2\$. A set \${f_1,f_2,ldots,f_d}\$ of distinctItalian dominating functions on \$D\$ with the property that \$sum_{i=1}^d f_i(v)le 2\$ for each \$vi...

متن کامل

The signed Roman domatic number of a digraph

A signed Roman dominating function on the digraphD is a function f : V (D) −→ {−1, 1, 2} such that ∑ u∈N−[v] f(u) ≥ 1 for every v ∈ V (D), where N−[v] consists of v and all inner neighbors of v, and every vertex u ∈ V (D) for which f(u) = −1 has an inner neighbor v for which f(v) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on D with the property that ∑d i=1 fi(...

متن کامل

The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph \$D\$ is a function \$f: V(D)rightarrow {0,1,2}\$ satisfying the condition that every vertex \$v\$ with \$f(v)=0\$ has an in-neighbor \$u\$ with \$f(u)=2\$. The weight of an RDF \$f\$ is the value \$sum_{vin V(D)}f(v)\$. The Roman domination number of a digraph \$D\$ is the minimum weight of an RDF on \$D\$. A set \${f_1,f_2,dots,f_d}\$ of Roman dominating functions on ...

متن کامل

The Roman Domination Number of a Digraph

LetD = (V,A) be a finite and simple digraph. A Roman dominating function (RDF) on a digraph D is a labeling f : V (D) → {0, 1, 2} such that every vertex with label 0 has a in-neighbor with label 2. The weight of an RDF f is the value ω(f) = ∑ v∈V f(v). The Roman domination number of a digraph D, denoted by γR(D), equals the minimum weight of an RDF on D. In this paper we present some sharp boun...

متن کامل

The signed Roman k-domatic number of a graph

A signed Roman dominating function (SRDF) on a graph G is a function f : V (G) → {−1, 1, 2} such that u∈N [v] f(u) ≥ 1 for every v ∈ V (G), and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (G), is called a sig...

متن کامل

The distance Roman domatic number of a graph

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a vertex with label 2 within distance k from each other. A set {f1, f2, . . . , fd} of k-distance Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 2 for each v ∈ V (G), is call...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 1

صفحات  19- 26

تاریخ انتشار 2020-06-01

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com