Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine


چکیده مقاله:

One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two groups of transformers have been tested. First, the necessary measurements are performed on the model transformers under healthy conditions and under various fault conditions (axial displacement, radial deformation, disc space variation, short-circuits, and core deformation). Then, by dividing the frequency ranges of the measured transfer functions of the transformer, a new feature based on the cross-correlation technique is proposed for SVM training and validation. After the training process, by applying the data obtained from real transformers, the performance of SVM in different modes is evaluated and compared. Finally, the most appropriate feature has been provided.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...

متن کامل

Cancer Classification using Support Vector Machines and Relevance Vector Machine based on Analysis of Variance Features

Problem statement: The objective of this study is, to find the smallest set of genes that can ensure highly accurate classification of cancer from micro array data by using supervised machine learning algorithms. The significance of finding the minimum subset is three fold: The computational burden and noise arising from irrelevant genes are much reduced; the cost for cancer testing is reduced ...

متن کامل

Acoustic detection of apple mealiness based on support vector machine

Mealiness degrades the quality of apples and plays an important role in fruit market. Therefore, the use of reliable and rapid sensing techniques for nondestructive measurement and sorting of fruits is necessary. In this study, the potential of acoustic signals of rolling apples on an inclined plate as a new technique for nondestructive detection of Red Delicious apple mealiness was investigate...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}

عنوان ژورنال

دوره 9  شماره 1

صفحات  2- 13

تاریخ انتشار 2020-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری

copyright © 2015-2023