Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

نویسندگان

  • Mahjoobeh Meskaranian PhD student, Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
  • Peyman Pour Moghaddam Assistant Professor, Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده مقاله:

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be expected. Reliability tests comprise of objective function descent test and Jacobian test. The influence of data imperfections is also being studied. We define data imperfection as any factor that causes deterioration in FWI results. Some of these factors are coherent and incoherent noises in data, source wavelet inaccuracy in phase and amplitude, and the existence of gaps in the seismic survey. We compare time and frequency domain inversion methods sensitivity to data imperfection. In all cases, we found that time domain full waveform inversion is more sensitive to imperfections in the data. In general, we find that time domain FWI result shows more deterioration than frequency domain FWI. All tests have been done using 2D full waveform inversion codes. We employ the multi-scale inversion and finite difference scheme (FDM) for discretization, and the misfit function is minimized via limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D acoustic frequency-domain full-waveform inversion

We present one of the first attempt at implementing a massively parallel frequency-domain full-waveform inversion algorithm for imaging 3D acoustic media. The inverse method is based on a classic steepest-descent algorithm. The algorithm was designed so that one or several frequencies are inverted at a time. Wave propagation modeling, a key component of the inversion algorithm, is performed wit...

متن کامل

Second-order adjoint state methods for Full Waveform Inversion

Full Waveform Inversion (FWI) applications classically rely on efficient first-order optimization schemes, as the steepest descent or the nonlinear conjugate gradient optimization. However, second-order information provided by the Hessian matrix is proven to give a useful help in the scaling of the FWI problem and in the speed-up of the optimization. In this study, we propose an efficient matri...

متن کامل

Image-domain waveform inversion with the adjoint-state method

Waveform inversion is a velocity model building technique based on full seismograms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data-domain. Similar techniques can be formulated in the image domain, with seismic image as the input and seismic wavefields as the information carrier. The objective function for image-domain w...

متن کامل

Theoretical background for continental- and global-scale full-waveform inversion in the time–frequency domain

S U M M A R Y We propose a new approach to full seismic waveform inversion on continental and global scales. This is based on the time–frequency transform of both data and synthetic seismograms with the use of timeand frequency-dependent phase and envelope misfits. These misfits allow us to provide a complete quantification of the differences between data and synthetics while separating phase a...

متن کامل

A massively parallel frequency - domain full - waveform inversion algorithm for imaging acoustic me -

We present a massively parallel algorithm for distributed-memory platform to perform 2D acoustic frequency-domain Full-Waveform Inversion (FWI) of global offset seismic data. Our code is written in Fortran 90 and uses Message Passing Interface (MPI) for parallelism. The linearized inverse problem is solved by a classical gradient method which consists in finding a model perturbation which minim...

متن کامل

Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance

Full waveform inversion (FWI) is an appealing seismic data-fitting procedure for the derivation of highresolution quantitative models of the subsurface at various scales. Full modelling and inversion of viscoelastic waves from multiple seismic sources allow for the recovering of different physical parameters, although they remain computationally challenging tasks. An efficient massively paralle...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 13  شماره 4

صفحات  26- 42

تاریخ انتشار 2020-01-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023