﻿ Double Roman domination and domatic numbers of graphs

# Double Roman domination and domatic numbers of graphs

##### چکیده

A double Roman dominating function on a graph \$G\$ with vertex set \$V(G)\$ is defined in cite{bhh} as a function\$f:V(G)rightarrow{0,1,2,3}\$ having the property that if \$f(v)=0\$, then the vertex \$v\$ must have at least twoneighbors assigned 2 under \$f\$ or one neighbor \$w\$ with \$f(w)=3\$, and if \$f(v)=1\$, then the vertex \$v\$ must haveat least one neighbor \$u\$ with \$f(u)ge 2\$. The weight of a double Roman dominating function \$f\$ is the sum\$sum_{vin V(G)}f(v)\$, and the minimum weight of a double Roman dominating function on \$G\$ is the double Romandomination number \$gamma_{dR}(G)\$ of \$G\$.A set \${f_1,f_2,ldots,f_d}\$ of distinct double Roman dominating functions on \$G\$ with the property that\$sum_{i=1}^df_i(v)le 3\$ for each \$vin V(G)\$ is called in cite{v} a double Roman dominating family (of functions)on \$G\$. The maximum number of functions in a double Roman dominating family on \$G\$ is the double Roman domatic numberof \$G\$.In this note we continue the study the double Roman domination and domatic numbers. In particular, we presenta sharp lower bound on \$gamma_{dR}(G)\$, and we determine the double Roman domination and domatic numbers of someclasses of graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

## The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph \$D\$ is a function \$f: V(D)rightarrow {0,1,2}\$ satisfying the condition that every vertex \$v\$ with \$f(v)=0\$ has an in-neighbor \$u\$ with \$f(u)=2\$. The weight of an RDF \$f\$ is the value \$sum_{vin V(D)}f(v)\$. The Roman domination number of a digraph \$D\$ is the minimum weight of an RDF on \$D\$. A set \${f_1,f_2,dots,f_d}\$ of Roman dominating functions on ...

متن کامل

## Total double Roman domination in graphs

Let \$G\$ be a simple graph with vertex set \$V\$. A double Roman dominating function (DRDF) on \$G\$ is a function \$f:Vrightarrow{0,1,2,3}\$ satisfying that if \$f(v)=0\$, then the vertex \$v\$ must be adjacent to at least two vertices assigned \$2\$ or one vertex assigned \$3\$ under \$f\$, whereas if \$f(v)=1\$, then the vertex \$v\$ must be adjacent to at least one vertex assigned \$2\$ or \$3\$. The weight of a DR...

متن کامل

## The distance Roman domination numbers of graphs

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value ω(f) = ∑ v∈V f(v). The k-distance Roman domination number ...

متن کامل

## The k-Rainbow Domination and Domatic Numbers of Di- graphs

For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the condition u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. A set {f1, f2, . . . , fd} of k-rainbow dominating functions on D with t...

متن کامل

## A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph \$G=(V,E)\$ and a vertex \$v in V\$, by \$N(v)\$ we represent the open neighbourhood of \$v\$. Let \$f:Vrightarrow {0,1,2}\$ be a function on \$G\$. The weight of \$f\$ is \$omega(f)=sum_{vin V}f(v)\$ and let \$V_i={vin V colon f(v)=i}\$, for \$i=0,1,2\$. The function \$f\$ is said to bebegin{itemize}item a Roman \${2}\$-dominating function, if for every vertex \$vin V_0\$, \$sum_{uin N(v)}f(u)geq 2\$. The R...

متن کامل

## Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph \$G = (V, E)\$ is a labeling \$f : V rightarrow {0, 1, 2}\$ suchthat every vertex with label \$0\$ has a neighbor with label \$2\$. The weight of \$f\$ is the value \$f(V) = Sigma_{vin V} f(v)\$The Roman domination number, \$gamma_R(G)\$, of \$G\$ is theminimum weight of an RDF on \$G\$.An RDF of minimum weight is called a \$gamma_R\$-function.A graph G is said to be \$g...

متن کامل

ذخیره در منابع من

ذخیره شده در منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 1

صفحات  71- 77

تاریخ انتشار 2018-06-01

{@ msg @}

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com