Equipment capacity optimization of an educational building’s CCHP system by genetic algorithm and sensitivity analysis

نویسندگان

  • Leila Samandari-Masouleh Department of Chemical Engineering, College of Engineering University of Tehran, Tehran, Iran
  • Saeed Emami Department of Management Islamic Azad University, North Tehran Branch, Tehran, Iran
چکیده مقاله:

Combined cooling, heating, and power (CCHP) systems produce electricity, cooling, and heat due to their high efficiency and low emission. These systems have been widely applied in various building types, such as offices, hotels, hospitals and malls. In this paper, an economic and technical analysis to determine the size and operation of the required gas engine for specific electricity, cooling, and heating load curves during a year has been conducted for a building. To perform this task, an objective function net present value (NPV) was introduced and maximized by a genetic algorithm (GA). In addition, the results end up finding optimal capacities. Furthermore, a sensitivity analysis was necessary to show how the optimal solutions vary due to changes in some key parameters such as fuel price, buying electricity price, and selling electricity price. The results show that these parameters have an effect on the system’s performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of capacity and operation for CCHP system by genetic algorithm

The technical, economical and environmental performances of combined cooling, heating and power (CCHP) system are closely dependent on its design and operation strategy. This paper analyzes the energy flow of CCHP system and deduces the primary energy consumption following the thermal demand of building. Three criteria, primary energy saving (PES), annual total cost saving (ATCS), and carbon di...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Sensitivity Analysis of Water Flooding Optimization by Dynamic Optimization

This study concerns the scope to improve water flooding in heterogeneous reservoirs. We used an existing, in-house developed, optimization program consisting of a reservoir simulator in combination with an adjoint-based optimal control algorithm. In particular we aimed to examine the scope for optimization in a two-dimensional horizontal reservoir containing a single high permeable streak, ...

متن کامل

Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently ope...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 4

صفحات  375- 387

تاریخ انتشار 2017-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023