× خانه ژورنال ها پست ها ثبت نام ورود

Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation

نویسندگان

  • Akbar Mohebbi Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran
  • Marziyeh Saffarian Department of Applied Mathematics, Faculty of Mathematical Science, University of Kashan, Kashan, Iran

چکیده

In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained from solving considered model on regular and irregular domains, demonstrate the accuracy and efficiency of the proposed schemes.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...

In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...

Abstract: In this paper, a two-dimensional variable-order fractional advection-dispersion equation with variable coefficient is considered. The numerical method with first order temporal accuracy and first order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by using energy method. Finally, the results of a numerical example supports the theoret...

In this paper we propose a meshfree technique for the numerical solution of the two dimensional Burger’s equation. Collocation method using the Radial Basis Functions (RBFs) is coupled with first order accurate finite difference approximation. Different types of RBFs are used for this purpose. Performance of the proposed method is successfully tested in terms of various error norms. In the case...