Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

نویسندگان

چکیده مقاله:

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltzmann method; molecular distributions of the components are evaluated and the concentration voltage drop is investigated. The results of voltage drop in different current densities are validated with previous studies. Then the effects of various parameters such as porosity and non-dimensional current density on the gas diffusion of H2 and H2O, and also the concentration voltage drop in the porous anode are evaluated. It is revealed that at a specific non-dimensional current density, reducing porosity causes increasing H2 concentration in anode and concentration voltage loss. To apply the CFD model, a computer program in MATLAB has been used.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimization of non - isothermal two- phase flow in the cathode gas diffusion layer of PEM fuel cell

In this paper, a non-isothermal two-phase flow in the cathode gas diffusion layer (GDL) of PEM fuel cell is modeled. The governing equations including energy, mass and momentum conservation equations are solved by numerical methods. Also, the optimal values of the effective parameters such as the electrodes porosity, gas diffusion layer (GDL) thickness and inlet relative humidity are calculated...

متن کامل

Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method

The radiation effect within the solid anode, electrolyte, and cathode SOFC layers problem has been investigated in this paper. Energy equation is solved by the Lattice Boltzmann method (LBM). The Rosseland method is used to model the radiative transfer in the electrodes. The Schuster-Schwarzschild method is used to model the radiative transfer in the electrolyte. Without radiatve effect, the fo...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

Energy Price Analysis of a Biomass Gasification-Solid Oxide Fuel Cell-Gas Turbine Power Plant

In this study, effect of energy price on the development of a biomass gasification-solid oxide fuel cell-gas turbine hybrid power plant has been considered. Although, these hybrid systems have been studied based on sustainable approaches, economic aspects, specifically conventional energy prices, which are the principal bottleneck for the development of these new power generators, have attracte...

متن کامل

Experimental Investigation of a Solid Oxide Fuel Cell Stack using Direct Reforming Natural Gas

In this study, a solid oxide fuel cell (SOFC) stack has been successfully fabricated and tested by using direct natural gas. The main objective of this research was to achieve optimal long-term performance of the SOFC stack without carbon deposition by using low-cost natural gas as a fuel. The stack configuration was improved by a new interconnect design and made of cost-effective raw materials...

متن کامل

Performance modeling and parametric investigation of a solid oxide fuel cell (SOFC)

In his paper, performance modeling and parametric study of a tubular solid oxide fuel cell (SOFC) fed by hydrogen was conducted. The components of the fuel cell system and its reactions were entirely modelled and an electrochemical analysis done for it. A variety of modeling parameters including temperature, working pressure and the air mass- flow rate have been investigated in order to observe...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 4

صفحات  263- 270

تاریخ انتشار 2015-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023