× خانه ژورنال ها پست ها ثبت نام ورود

Nonlinear Vibration Analysis of Multi-Walled Carbon Nanotubes in Thermal Environment using the Nonlocal Timoshenko Beam Model

نویسندگان

  • Habib Ramezannezhad Azarboni Ph.D. Candidate, Faculty of Engineering, University of Guilan
  • Reza Ansari Assistant Professor, Faculty of Engineering, University of Guilan

چکیده

In this paper, based on the nonlocal Timoshenko beam theory, a nonlinear model is presented for the vibrational behavior of carbon nanotubes (CNTs) embedded in elastic medium in thermal environment. Using the Timoshenko beam theory and nonlocal elasticity of Eringen, the influences of rotary inertia, transverse shear deformation and small scale effect are taken into account. To model the interaction forces between walls, whether adjacent or non-adjacent, the van der Waals interlayer interactions are considered. The harmonic balance method (HBM) is used for the solution of the set of nonlinear governing equations and the frequency function of the system for the simply-supported boundary conditions is derived. Compared to the incremental harmonic balance method which has been employed in the previous studies, the HBM is simpler and has a reasonable accuracy. The effects of geometrical parameters of nanotubes such as the number of walls, the ratio of length to outer diameter and environmental conditions such as elastic medium modulus, temperature and also the effect of nonlocal parameter on the nonlinear frequency are investigated. The presented nonlinear vibration analysis is of a general form, so that they are applicable for CNTs with arbitrary number of walls. The obtained results for single-, double- and triple-walled CNTs indicate that with an increase in the number of walls, elastic medium modulus, aspect ratio and temperature, the value of nonlinear frequency tends to that of its linear counterpart. Also, a comparison between the results of the Timoshenko beam theory and those of Euler-Bernoulli beam theory shows that the difference between the frequency responses of these theories is significant for short CNTs, but, as the length increases, the difference between the results becomes negligible.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

carbon nanotube is investigated based on an elastic multi-layer shell model with van der Waals interaction taken into consideration. The multi-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes in the proposed model. And the Donnell equations of cylindrical shells are employed to describe the nonlinear b...

Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs) is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive govern...

In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...

The present paper is concerned with the free vibration analysis of double-walled carbon nanotubes embedded in an elastic medium and based on Eringen's nonlocal elasticity theory. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The governing equations of motion which are coupled with each other via the van der Waals interla...

In this work, nonlocal elasticity theory is applied to analyze nonlinear free vibrations of slightly curved multi-walled carbon nanotubes resting on nonlinear Winkler and Pasternak foundations in a thermal and magnetic environment. With the aid of Galerkin decomposition method, the systems of nonlinear partial differential equations are transformed into systems of nonlinear ordinary differentia...

In this study, nonlinear vibration of axially moving strings in thermal environment is investigated. The vibration haracteristics of the system such as natural frequencies, time domain response and stability states are studied at different temperatures. The velocity of the axial movement is assumed to be constant with minor harmonic variations. It is presumed that the system and the environment...