× خانه ژورنال ها پست ها ثبت نام ورود

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

نویسندگان

  • José Francisco Gómez-Aguilar Departamento de Ingeniería Electrónica, CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca Morelos, México
  • Sachin Kumar Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi, 221005, India

چکیده

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula of tk. The unknown function and their derivatives in spatial direction are approximated with the quasi wavelet-based numerical method. We apply this newly derived method to solve the nonlinear distributed order reaction-diffusion in which time-fractional derivative is of C-F type. The accuracy and validity of the proposed method is exhibited by giving a solution to some numerical examples. The obtained numerical results are compared with the analytical results and conclude that our proposed numerical method achieves accurate results. On the other hand, the method is easy to apply on higher-order fractional partial differential equations and variable-order fractional partial differential equations.

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ورود

منابع مشابه

This paper presents a computational technique based on the Tau method and Legendre polynomials for the solution of a class of time-fractional telegraph equations. An appropriate representation of the solution via the Legendre operational matrix of fractional derivative is used to reduces its numerical treatment to the solution of a set of linear algebraic equations. The fractional derivatives a...

The approximate analytical solution of fractional order, nonlinear, reaction differential equations, namely the nonlinear diffusion equations, with a given initial condition, is obtained by using the homotopy analysis method. As a demonstration of a good mathematical model, the present article gives graphical presentations of the effect of the reaction terms on the solution profile for various ...

(2012) Numerical techniques for the variable order time fractional diffusion equation. NOTICE: this is the author's version of a work that was accepted for publication in Applied Mathematics and Computation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. ...

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

Options pricing have an important role in risk control and risk management. Pricing discussion requires modelling process, solving methods and implementing the model by real data in a given market. In this paper we show a model for underlying asset based on fractional stochastic models which is a particular type of behavior of stochastic assets changing. In addition a numerical method based on ...