Sufficient conditions for maximally edge-connected and super-edge-connected

نویسندگان

چکیده

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximallyedge-connected or super-edge-connected if the numberof edges is large enough. Examples will demonstrate that our conditions are sharp.noindent {bf Keywords:} Edge-connectivity; Maximally edge-connected graphs; Super-edge-connectedgraphs

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

maximally edge - connected and super - edge - connected graphs ∗

Let G be a connected graph with minimum degree δ and edgeconnectivity λ. A graph is maximally edge-connected if λ = δ, and it is superedge-connected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. In this paper, we show that a connected graph or a connected triangle-free graph is maximally edge-connected or sup...

متن کامل

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

Sufficient conditions for maximally edge-connected graphs and arc-connected digraphs

A connected graph with edge connectivity λ and minimum degree δ is called maximally edge-connected if λ = δ. A strongly connected digraph with arc connectivity λ and minimum degree δ is called maximally arc-connected if λ = δ. In this paper, some new sufficient conditions are presented for maximally edge-connected graphs and arc-connected digraphs. We only consider finite graphs (digraphs) with...

متن کامل

sufficient conditions on the zeroth-order general randic index for maximally edge-connected digraphs

let $d$ be a digraph with vertex set $v(d)$. for vertex $vin v(d)$, the degree of $v$,denoted by $d(v)$, is defined as the minimum value if its out-degree and its in-degree.now let $d$ be a digraph with minimum degree $deltage 1$ and edge-connectivity$lambda$. if $alpha$ is real number, then the zeroth-order general randic index is definedby $sum_{xin v(d)}(d(x))^{alpha}$. a digraph is maximall...

متن کامل

Maximally edge-connected digraphs

In this paper we present some new sufficient conditions for equality of edge-connectivity and minimum degree of graphs and digraphs as well as of bipartite graphs and digraphs.

متن کامل

Sufficient conditions for graphs to be maximally 4-restricted edge connected

For a subset S of edges in a connected graph G, the set S is a k-restricted edge cut if G− S is disconnected and every component of G− S has at least k vertices. The k-restricted edge connectivity of G, denoted by λk(G), is defined as the cardinality of a minimum k-restricted edge cut. A connected graph G is said to be λk-connected if G has a k-restricted edge cut. Let ξk(G) = min{|[X, X̄ ]| : |...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 2  شماره 1

صفحات  35- 41

تاریخ انتشار 2017-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021