Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors

نویسندگان

چکیده مقاله:

Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogeneous sensor network containing two types of passive anchor-nodes: Omni-directional and vector sensors. An omni-directional sensor can simply measure the received signal strength (RSS) without any additional hardware. In other side, an acoustic vector sensor (AVS) consists of a velocity-sensor triad and an optional acoustic pressure-sensor, all spatially collocated in a point-like geometry. The velocity-sensor triad has an intrinsic ability in direction finding process. Moreover, despite its directivity, a velocity-sensor triad can isotropically measure the received signal strength and has a potential to be used in RSS-based ranging methods. Employing a heterogeneous sensor-pair consisting of one vector and one omni-directional sensor, this study tries to obtain unambiguity estimation for the location of an unknown source in a three-dimensional (3D) space. Using a velocity-sensor triad as an AVS, it is possible to determine the direction of arrival (DOA) of the source without any restriction on the spectrum of the emitted signal. However, the range estimation is a challenging problem when the target is closer to the omnidirectional sensor than the vector sensor. The existence method proposed for such configuration suffers from a fundamental limitation, namely the localization coverage. Indeed, this algorithm cannot provide an estimate for the target range in 50 percent of target locations due to its dependency to the relative sensor-target geometry. In general, our proposed method for the considered problem can be summarized as follows: Initially, we assume that the target's DOA is estimated using the velocity-sensor triad’s data. Then, considering the estimated DOA and employing the RSS measured by two sensors, we propose a computationally efficient algorithm for uniquely estimation of the target range. To this end, the ratio of RSS measured by two sensors is defined and, then, shown that this power ratio can be expressed as a monotonic function of the target range. Finally, the bisection search method is proposed to find an estimate for the target range. Since the proposed algorithm is based on bisection search method, a solution for the range of the target independent of its location is guaranteed. Moreover, a set of future aspects and trends is identified that might be interesting for future research in this area. Having a low computational complexity, the proposed method can enhance the coverage area mostly two times of that explored by the existence method. The simulated data confirms the speed and accuracy of developed algorithm and shows its robustness against various target ranges and different sensor spacing.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target localization in unknown environments using static wireless sensors and mobile robots

This paper proposes a novel scheme for target localization in unknown environments using a prior-deployed static wireless sensor network (WSN). The goal is to have multiple mobile autonomous robots navigate from any point in a region to the closest identified target location just by interacting with the sensors. This is achieved in two ways: (i) by producing a pseudogradient in the region havin...

متن کامل

Numerical simulation of the localization of elastic waves in two- and three-dimensional heterogeneous media

Reza Sepehrinia,1 M. Reza Rahimi Tabar,1,2 and Muhammad Sahimi3,* 1Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran 2Institute of Physics, Carl von Ossietzky University, Oldenburg D-26111, Germany 3Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA Received 18 February 2008...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Evaluation of Six-Dimensional Cranial Target Positioning Accuracy in Two Different Immobilization Methods Using Exactrac System

Introduction: The aim of this study was to determine the accuracy of two different immobilization methods in patient positioning in cranial radiotherapy. The six-dimensional (6D) target localization accuracy of using a dedicated stereotactic mask was compared with that of a conventional head mask by the ExacTrac system. Material and Methods: ...

متن کامل

Differentiation and localization of target primitives using infrared sensors

This study investigates the use of low-cost infrared sensors in the differentiation and localization of commonly encountered target primitives in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings from such sensors are highly dependent on target location and properties in a way which cannot be represented in a simple manner, making the differentiation and...

متن کامل

Heterogeneous data fusion for three-dimensional gait analysis using wearable MARG sensors

Gait analysis has become a research highlight. In this paper, we propose a computing method using wearable MARG (magnetic angular rate and gravity sensor arrays) with wireless network, which can calculates absolute and relative orientation and position information of human foot motion during level walking and stair climbing process. Three-dimensional foot orientation and position were estimated...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 17  شماره 1

صفحات  147- 158

تاریخ انتشار 2020-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023