نتایج جستجو برای: شبکه ایمنی مصنوعی

تعداد نتایج: 54520  

ژورنال: :تحقیقات مهندسی کشاورزی 2009
بهزاد قنبریان علویجه عبدالمجید لیاقت سمانه سهرابی

ویژگی­های هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا می­نمایند.  از آنجائی­که اندازه­گیری مستقیم این قبیل ویژگی­های هیدرولیکی خاک امری وقت­گیر و هزینه­بر است روش­های غیرمستقیمی چون توابع انتقالی و شبکه­های عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافته­اند.  در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به­ منظور تخمین هدایت هیدرولیک...

محمد شعبانی

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

سابقه و هدف: پیش‌بینی دقیق تولید شیر یکی از ملزومات مدیریت دامپروری و مدل‌سازی درآمد دامداران در تجزیه و تحلیل های هزینه-فایده می‌باشد. بطوری که پیش‌بینی دقیق رکوردهای آینده می‌تواند طول دوره رکوردبرداری را کاهش دهد. برآوردهای زودهنگام ارزش اصلاحی گاوهای نر با استفاده از رکوردهای بخشی از دوره شیردهی می‌تواند باعث کاهش فاصله نسل و بیشتر شدن شدت انتخاب و پیشرفت ژنتیکی گردد. مدل خطی یکی از روشهای ...

این مقاله امکان توسعه و بکارگیری شبکه‌های عصبی مصنوعی در مدل‌سازی نتایج آزمایش‌های مونوتونیک سه‌محوری قطر بزرگ روی انواع مصالح سنگریزه‌ای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه می‌دهد. در ابتدا قابلیت شبکه‌های عصبی مصنوعی(ANNs) در مدل‌سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره‌ای - کرنش محوری بررسی شده است که دلالت بر قابلیت نس...

ژورنال: :اکوسیستم های طبیعی ایران 0
بهنام بهرامی دانشجوی دکتری اردوان قربانی استادیار مرتعداری

اندازه گیری مستقیم تنوع گونه­ای امری وقت­گیر و ­هزینه­بر بوده و تا حدی به دلیل خطاهای حاصل از نمونه­گیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتور­های کم­هزینه در پیش­بینی تنوع گونه­ای بوسیله شبکه مدل­های عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونه­برداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتی­متری خاک صورت گر...

ژورنال: :تحقیقات کاربردی علوم جغرافیایی 0
امیرحسین حلبیان استادیار اقلیم شناسی، گروه جغرافیا، دانشگاه پیام¬نور، تهران، ایران محمد دارند استادیار اقلیم شناسی، دانشگاه کردستان

بارش مهمترین سنجه­ی هواشناسی و اقلیمی است. در این پژوهش به منظور پیش­بینی بارش اصفهان از داده های بارش ماهانه­ی ایستگاه همدید اصفهان در بازه­ی آماری (1951-2009) به مدت 59 سال و به دلیل رفتار غیرخطی بارش از شبکه های عصبی مصنوعی جهت پیش­بینی آن بهره گرفته شد. در این ارتباط، 70 درصد داده­ها جهت آموزش شبکه و 30 درصد داده ها برای تست و اعتبار سنجی اختصاص داده شد. نتایج پژوهش بعد از آزمون شبکه با لای...

ژورنال: :فصلنامه علمی - پژوهشی، پژوهش های رشد و توسعه اقتصادی 2014
مجتبی کاظمی سید عبدالمجید جلایی اسفندآبادی حسین اکبری فرد

در این تحقیق سعی شده است که به طور تجربی به بررسی و پیش بینی تأثیر نااطمینانی نرخ ارز بر رشد اقتصادی ایران برای دوره 1389-1338 با استفاده از روش شبکه ها ی عصبی مصنوعی پرداخته شود. برای این منظور در ابتدا نااطمینانی نرخ ارز با بکارگیری الگوی واریانس ناهمسانی شرطی اتورگرسیو تعمیم یافته (garch)، محاسبه شده است. سپس تأثیر این نااطمینانی در نرخ ارز بر رشد اقتصادی ایران با توجه به شبکه های عصبی مصنوع...

ژورنال: :دانش آب و خاک 0
تورج هنر سوده پورحمزه

در این تحقیق، از یک شبکه عصبی مصنوعی در برآورد پروفیل پرش هیدرولیکی در حوضچه آرامش همراه با دیواره همگرا  که از حالت­های خاص و پیچیده پرش هیدرولیکی می­باشد، استفاده شده است. تعداد 1500 داده آزمایشگاهی اعماق پرش هیدرولیکی مربوط به مقاطع مستطیلی، برای همگرایی  %7/2،  %4 و %3/5 مورد استفاده قرار گرفته است. در توسعه مدل شبکه عصبی مصنوعی، 10 ساختار پرسپترون، با تعداد لایه­های پنهان و نرون­های مختلف،...

یکی از جنبه‌های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه‌ای می‏باشد. هدف این مطالعه ارزیابی عملکرد مقایسه‌ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود می‏باشد. مدل‏ها براساس آمار 104 حادثه وقوع همزمان ثب...

در این تحقیق به مقایسه کارایی دو روش پیش‌بینی شبکه عصبی مصنوعی (ANN) و روش سنتی خودرگرسیون میانگین متحرک انباشته (ARIMA) در پیش‌بینی قیمت سهام در بازار سهام ایران پرداخته شده است. بدین منظور 2 شرکت دارویی البرز‌دارو و جام‌دارو انتخاب شده و مدل ARIMA و مدل شبکه عصبی مصنوعی برای هر دو شرکت تخمین زده شد. به منظور تخمین مدل شبکه عصبی مصنوعی، متغیر قیمت سهام به عنوان متغیر وابسته و متغیر‌های حجم معا...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید