نتایج جستجو برای: روش شبکه عصبی کوهنن
تعداد نتایج: 385270 فیلتر نتایج به سال:
در این مقاله سیستم های چندشبکه ای به منظور کاهش خطا و افزایش دقت نتایج حاصل از روش شبکه عصبی مصنوعی پیشنهاد شده است. در این سیستم ها نتایج چندین شبکه که به طور منفرد و مجزا آموزش دیده اند، به روشی مناسب با هم ترکیب می شود. در این مطالعه تخلخل مؤثر یکی از مخازن هیدروکربوری میدان عظیم پارس جنوبی با استفاده از سیستم های چندشبکه ای برآورد شده است. از شبکه های عصبی مصنوعی پس انتشار خطا که به روش اعت...
زمینه و هدف: تشخیص افتراقی مننژیت باکتریال امری پیچیده است، زیرا ویژگی های تشخیصی زیادی در آن دخالت دارد. از سوی دیگر، امروزه منطق فازی و شبکه های عصبی مبنای بسیاری از سیستم های هوشمند هستند و ظرفیت لازم را برای حل مشکلات تشخیصی این بیماری دارند. هدف این مقاله، مقایسه ی منطق فازی و شبکه های عصبی مصنوعی در افتراق مننژیت باکتریال از سایر مننژیت هاست. روش بررسی: در این مطالعه برای تشخیص افتراقی م...
پیشبینی کوتاه مدت بار در بازار برق اهمیت زیادی دارد. از طرفی عوامل مهم تأثیرگذار بر پیشبینی کوتاه مدت بار به ویژگیهای بار الکتریکی و آب و هوایی هر منطقه بستگی دارد، بنابراین با استفاده از دادههای واقعی استان چهارمحال و بختیاری-شامل بار و دما- به پیشبینی کوتاه مدت بار الکتریکی استان پرداختهایم. بدین منظور با استفاده از چهار روش مختلف شبکه عصبی پرسپترون (MLp < /strong>)، مجمعی از شبکه عصبی ...
در این مقاله روش جدیدی برای مدل سازی خطی سیستم های غیر خطی ارائه می گردد . اساس روش پیشنهادی طراحی یک شبکه عصبی مصنوعی دو لایه وآموزش آن بر مبنای داده های ورودی- خروجی است . وزن های اتصالات این شبکه ضرایب تابع تبدیل هستند . در سیستم هایی که رفتار آنها خطی باشد ، روش حداقل کردن مربعات خطا (lse) بهترین نتایج مدل سازی را ارائه می نماید . در سیستم هایی که رفتار غیر خطی دارند ، نظیر بعضی قسمت های ب...
مراتع به دلایل متعدد از جمله تولید علوفه، دامداری، ارزش تفرجگاهی و حفاظت آب و خاک مهم می باشند. از طرفی، برای حفاظت و مدیریت بهینه از این منابع طبیعی، مطالعات در مورد آنها ضروری است. از آنجا که مطالعات میدانی هزینه بر و زمان بر می باشد، استفاده از مدل ها در کنار مطالعات صحرایی، برای برآورد ویژگیهای پوشش گیاهی متداول شده است. در تحقیق حاضر شبکه عصبی مصنوعی و مدلسازی آماری، جهت شبیه سازی درصد تا...
یکی از جنبههای حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانهای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسهای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدلها براساس آمار 104 حادثه وقوع همزمان ثب...
در این تحقیق، سه روش طبقهبندی شبکه عصبی مصنوعی، حداکثر احتمال و حداقل فاصله جهت تحلیل تغییرات کاربری اراضی، طی سالهای 1989 تا 2015 در سه سنجنده ماهواره لندست در منطقه ساری مورد ارزیابی و مقایسه قرار گرفت. پس از تصحیحات هندسی و اتمسفری، تصاویر سال 1989، 2002 و 2015، تحت سه الگوریتم شبکه عصبی مصنوعی، حداکثر احتمال و حداقل فاصله در پنج کلاس کاربری طبقهبندی شدند. پس از ارزیابی صحت روشها، مقد...
هدف پژوهش حاضر مقایسه قدرت پیشبینی روشهای شبکه عصبی فازی با شبکه عصبی موجک فازی در پیشبینی قیمت سهام بانکها در بورس اوراق بهادار تهران است. دوره پژوهش این پژوهش از سال 1390 تا 1395 است. در این پژوهش، از سیستم منطق فازی به همراه سیستم شبکه عصبی چندلایه با ساختار بهینهسازی پس انتشار خطا و ماکزیمم همپوشانی تبدیل موجک گسسته برای متغیرهای نرخ ارز، نفت اوپک، طلا، شاخص کل سهام و همچنین حجم معاملا...
پارامترهای ژئومکانیکی و پتروفیزیکی مخزن همانند سرعت موج برشی، تخلخل و تراوایی از جمله پارامترهای مهمی هستند که در شبیهسازی مخازن هیدروکربوری و استراتژیهای اکتشافی نقش موثری ایفا می کنند. اخیراً روشهای هوش مصنوعی بهمنظور پیشبینی این پارامترها با استفاده از دادههای چاه پیمایی بهکاربرده شدهاند. بااینحال پیشبینی ویژگیهای مخازن ناهمگن همواره با دشوارهای بسیاری همراه است و بهسختی پاسخ مناس...
برآورد دقیق میزان رسوب معلق رودخانهها از مسائلی مهم در طراحی مخازن، آلودگی دریاچهها، طراحی کانالها و لایروبی آنها بعد از سیلابها، تعیین خسارتهای ناشی از رسوبگذاری و تعیین تأثیرات مدیریت آبخیز است. روشهای متعددی بهمنظور برآورد بار معلق رودخانهها وجود دارد. یکی از این روشها، که در حل مسائل مختلف هیدرولوژی رسوب و پیشبینی آن کاربرد زیادی دارد، روشهای نوروفازی و شبکههای عصبی مصنوعی است. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید