نتایج جستجو برای: core shell magnetic nanostructure
تعداد نتایج: 589421 فیلتر نتایج به سال:
In this study, we investigated the spin dependent electronic transport of a fishbone-like nanostructure including two magnetic atoms at its ends. The electronic conductance of this nanostructure for three different orientations of atomic magnetic moments was numerically studied when the structure was sandwiched between two nonmagnetic leads. By using Green’s function technique at the tight-bind...
Magnetic drug targeting is a drug delivery system applicable to cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. In the present research, casein-coated iron oxide nanocarriers (CCIONPs) of core shell nanostructure have been described as being applicable to magnetic drug targeting. The structure, morphology, and composition of p...
In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and...
The great potential of magnetic field enriched surface enhanced resonance Raman spectroscopy (SERRS) for early malaria diagnosis has been demonstrated previously. This technique is able to detect β-hematin, which is equivalent to a malaria biomarker (hemozoin) in Raman features, at a concentration of 5 nM. In this study, we present the optimization of nanoparticles used in the magnetic field en...
This study describes a facile two-step approach to modify the surface of nanoparticles, thereby imparting a core-shell structure to the system. The core consists of magnetic nanoparticles and the shell is composed of thermoresponsive hydroxypropyl cellulose, using a coupling agent to covalently bind the core to the shell. Hydroxypropyl cellulose is known for its biocompatibility and biodegradab...
in the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the fe3o4@pt core-shell nanoparticles/carbon-ceramic electrode (fe3o4@pt/cce). the fe3o4@pt nanoparticles were prepared via a simple and fast chemical method and their surface morphology, nanostructure properties, chemical composition, crystal phase, ...
By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید