نتایج جستجو برای: central difference
تعداد نتایج: 869819 فیلتر نتایج به سال:
and Applied Analysis 3 andX E = x−uΔt (similarly we see thatX E = x−2uΔt for the two-step methods). In (7) with X being replaced by X E , we have φ n+1 − φ n (x − uΔt) Δt − νΔφ n+1 = f n+1 . (9) On the other hand, (9) can be derived by MMOC [5]. In fact, with u = (u 1 , u 2 ), let s denote the direction vector (1, u 1 , u 2 ), and define the operator d ds := 1 θ ( ∂ ∂t + u ⋅ ∇) , (10) with θ(x,...
Article history: Received 27 June 2013 Received in revised form 22 January 2014 Accepted 25 March 2014 Available online 2 April 2014
Fractional-order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, in order to solve the fractional advection-diffusion equation, the fractional characteristic finite difference method is presented, which is based on the method of characteristics (MOC) and fractional finite difference (FD) procedures. The ...
Using classic differential quadrature formulae and uniform grids, this paper systematically constructs a variety of high-order finite difference schemes, and some of these schemes are consistent with the so-called boundary value methods. The derived difference schemes enjoy the same stability and accuracy properties with correspondent differential quadrature methods but have a simpler form of c...
This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...
High-order finite difference methods are efficient, easy to program, scale well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback has been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-byparts operators and weak bo...
and Applied Analysis 3 The grid function y(x, t) is a function defined at the grid points of g. we denote the nodal values of a grid function y(x, t) between time levels t 0 and t 0 as y (x, t) = y (x 1 , x 2 , t l,j i ) = y l,j n1 ,n2 , (11) for x ∈ ω i , i > 0, j = 0, . . . , m i . For x ∈ ω 0 we define y (x, t) = y (x 1 , x 2 , t l+1 0 ) = y l+1 n1 ,n2 . (12) δ x1 , δ x1 and δ x2 , δ x2 are ...
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید