نتایج جستجو برای: ماتلیس
تعداد نتایج: 20 فیلتر نتایج به سال:
lr{indent}فرض کنیم $(r,ma)$ یک حلقه جابه جایی موضعی، $i$ ایده آلی از $r$ و $m$ یک $-r$مدول با تولید متناهی باشد که $ i m eq m$. فرض کنیم $d(-)=hom_r(-,e)$ که در آن $e$ پوشش انژکتیو $r/ ma$ است. indent در این پایان نامه ابتدا ثابت می کنیم که اگر $grade(mathfrak{a},m) geq n$ و برای هر $i >n$، $-i$امین مدول کوهمولوژی موضعی $h_{i}^i (m) $ صفر باشد، آن گاه $h_{...
فرض کنید (r,m) حلقه ی جابجایی موضعی(نوتری) از بعد d،m یک r- مدول متناهی مولّد و i ایده آلی از r باشد. نشان می دهیم ایده آل های اوّل وابسته به i- امین مدول کوهمولوژی موضعی m، یعنی hii(m) ، برای هر i?0، در حالت های زیر مجموعه ای متناهی است: (i) هنگامیکه .d?3 (ii) هنگامیکه d=4 و rp برای هر ایده آل اول p ? m منظّم باشد. (iii) هنگامیکه d=5، r حلقه ای غیر منشعب موضعی منظّم و m یک r– مدول فارغ از تاب...
چکیده ندارد.
اگر یک حلقه ی موضعی و نوتری و جابجایی با بعد و یک ایده آل از باشد. در این رساله نشان داده شده است که اگر یک حلقه ی منظم باشد. آن گاه مجموعه ی ایده آل های اول وابسته ی مدول کوهمولوژی موضعی متناهی است. همچنین نشان داده شده است که اگر یک دستگاه پارامتری برای حلقه ی باشد. آنگاه برای هر مجموعه ی ایده آل های اول وابسته ی نامتناهی است. سرانجام برای مثال نقض گروتندیک مثال نقضی ارائه داده می شود با نشان...
در این رساله به بررسی خواص متناهی بودن مدولهای کوهمولوژی مو ضعی می پردازیم. دو مقوله ی مهم مد نظر ما یکی هم متناهی بودن این مدولها و دیگری متناهی بودن مجموعه ی ایده آلهای اول وابسته ی این مدولهاست. از نقطه نظر هم متناهی بودن این مدولها ثابت کرده ایم که اگرi ایده آلی از حلقه ی نو تری r و m یک -r مدول با تولید متناهی باشد بقسمی که dim(m/im)=1 آنگاه تمامی مدولهای کوهمولوژی m نسبت به ایده آل i ، -i...
در این مقاله نتایجی روی یک حلقه نوتری و موضعی و تام از مشخصه عدد اول p که در آن نگاشت فروبنیوس متناهی است، بدست می آوریم. با تحدید فانکتور دوگانی ماتلیس یک هم ارزی بین کاتگوری مدول های چپ روی حلقه چندجمله ای اریب فروبنیوس که به عنوان r-مدول آرتینی هستند و کاتگوری مدول های راست روی حلقه چندجمله ای اریب فروبنیوس که به عنوان r-مدول نوتری هستند، بدست می آوریم. سپس زیرمدول های پوچساز خاص یک مدول چپ...
فرض کنیم ( r , m) حلقه ای موضعی و نوتری و i ایده آلی از r باشد. همچنین فرض کنیم m یک r–مدول با تولید متناهی از بعد d باشد.d-امین کوهمولوژی موضعی m نسبت به i را با علامت (h_i^d(m نشان می دهیم.با توجه به دوگان ماتلیس، واضح است که اگر r کامل و p ایده آل اولی از r باشد کهann_r(h_i^d(m))?p، آنگاه خاصییت ann_r(0:_{h_i^d(m)}p)=p برقرار است. به هرحال این خاصیت درحالت کلی برقرار نیست. دراین پایان نامه...
فرض کنیم(r,m) یک حلقه موضعی نوتری ،i یک ایده آل r و m یک r-مدول متناهی مولد باشد با dimm=d .واضح است که اگرr کامل باشد بنا به دوگان ماتلیس،آن گاه مدول کوهمولوژی موضعی h_i^d (m) ویژگی زیر را دارد: به ازای هر ایده آل اول ??"ann" ?_"r" "h" ?_"i" ^"d" ("m" )?p داشته باشیم: ?ann?_r (0:_(h_i^d (m) ) p)=p (*) علاوه براین، مدول کوهمولوژی موضعیh_i^d (m) در حالت کلی ویژگی(*) را ندارد.در این پایان نامه ...
چکیده ندارد.
قضیه صفر شدن هارتشورن - لیختنبام footnote{-lichtenbaum hartshorne }یکی از مهم ترین نتایج در زمینه مدول های کوهمولوژی موضعی است. چندین اثبات ازاین قضیه وجود دارد؛ برای مثال cite{bh2}, cite{cs} و cite{sc1}را ببینید. همچنین، تعمیم های زیادی ازاین قضیه وجود دارد.دیوانی آذر، نقی پور و طوسی در cite{dnt} آن را به کوهمولوژی موضعی با محمل در زیرمجموعه های بسته تحت تخصیص توسیع داده اند. تاکاهاشی foo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید