نتایج جستجو برای: روش mcmc
تعداد نتایج: 374284 فیلتر نتایج به سال:
We develop a novel Markov chain Monte Carlo (MCMC) method that exploits hierarchy of models increasing complexity to efficiently generate samples from an unnormalized target distribution. Broadly, the rewrites multilevel MCMC approach Dodwell et al. [SIAM/ASA J. Un-certain. Quantif., 3 (2015), pp. 1075–1108] in terms delayed acceptance Christen and Fox [J. Comput. Graph. Statist., 14 (2005), 79...
مدل های رگرسیون جمعی ساختاری قالبی انعطاف پذیر از مدل های آماری در زمینه های کاربردی هستند. گاهی در تحلیل بیز سلسله مراتبی این مدل ها توزیع های پسینی فرم بسته ای ندارند و استفاده از الگوریتم های مونت کارلوی زنجیره مارکوفی (mcmc) ممکن است به دلیل پیچیده بودن و تعداد زیاد پارامترهای این مدل زمان بر باشد. برای حل این مشکل می توان از تقریب لاپلاس آشیانی جمع بسته استفاده کرد، که در آن با استفاده از ...
We apply coarse-to-fine MCMC to perform Bayesian inference for a seismic monitoring system. While traditional MCMC has difficulty moving between local optima, by applying coarse-to-fine MCMC, we can adjust the resolution of the model and this allows the state to jump between different optima more easily. It is quite similar to simulated annealing. We will use a 1D model as an example, and then ...
Markov Chain Monte Carlo (MCMC) methods are increasingly popular among epidemiologists. The reason for this may in part be that MCMC offers an appealing approach to handling some difficult types of analyses. Additionally, MCMC methods are those most commonly used for Bayesian analysis. However, epidemiologists are still largely unfamiliar with MCMC. They may lack familiarity either with he impl...
بحران مالی جهانی اخیر مشارکتکنندگان بازارهای مالی را بر آن داشت تا رویکرد قابل قبولی را برای پوشش ریسک فراهم نمایند. یکی از معیارهای مهم برای این منظور شاخص ارزش در معرض ریسک میباشد که در طی دو دهه اخیر وارد ادبیات مالی شده است. به طور معمول سه رویکرد پارامتریک، ناپارامتریک و شبه پارامتریک برای محاسبه و برآورد VaR مورد استفاده قرار میگیرد. در این مطالعه روش شبیهسازی زنجیره مارکف مونتکارلو ...
When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate B...
Monte Carlo sampling methods are the standard procedure for approximating complicated integrals of multidimensional posterior distributions in Bayesian inference. In this work, we focus on class Layered Adaptive Importance Sampling (LAIS) scheme, which is a family adaptive importance samplers where Markov chain algorithms employed to drive an underlying multiple scheme. The modular nature LAIS ...
Abstract We study a class of adaptive Markov Chain Monte Carlo (MCMC) processes which aim at behaving as an optimal target process via a learning procedure. We show, under appropriate conditions, that the adaptive process and the optimal (nonadaptive) MCMC process share identical asymptotic properties. The special case of adaptive MCMC algorithms governed by stochastic approximation is consider...
Tracking articulated figures in high dimensional state spaces require tractable methods for inferring posterior distributions of joint locations, angles, and occlusion parameters. Markov chain Monte Carlo (MCMC) methods are efficient sampling procedures for approximating probability distributions. We apply MCMC to the domain of people tracking and investigate a general framework for sample-appr...
Markov Chain Monte-Carlo (MCMC) is an increasingly popular method for obtaining information about distributions, especially for estimating posterior distributions in Bayesian inference. This article provides a very basic introduction to MCMC sampling. It describes what MCMC is, and what it can be used for, with simple illustrative examples. Highlighted are some of the benefits and limitations o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید