نتایج جستجو برای: لیوویل
تعداد نتایج: 172 فیلتر نتایج به سال:
بدین منظور نخست به گسسته سازی مساله به روش ضمنی کرانک-نیکلسون می پردازیم. سپس به روش جداسازی متغیرها جواب مساله را به صورت حاصلضربی از توابع مجزای معین با متغیرهای مجزا در نظر می گیریم. با جایگذاری جواب مفروض در طرح تفاضلی حاصل از گسسته سازی به یک مساله ی اشتورم-لیوویل گسسته دست می یابیم و سپس با استفاده از خواص مسائل اشتورم-لیوویل گسسته، جواب مساله را به صورت یک سری که جملات آن به صورت مضرب ها...
در این پایان نامه ، روش هم مکانی چبیشف برای محاسبه مقادیر ویژه تقریبی مسئله اشتورم - لیوویل پیشنهاد شده است. اعمال روش هم مکانی برای یافتن مقادیر ویژه مسئله اشتورم - لیوویل منجر به مسئله تعمیم یافته مقدار ویژه ماتریس می شود.
در این پایان نامه دستگاه معادلات دیفرانسیل مرتبه اول خطی را روی بازه متناهی تحت شرایط اولیه در نظر می گیریم. در ابتدا با تعویض متغیرهای مناسبی دستگاه مذکور را به یک معادله استورم-لیوویل تبدیل می کنیم. با ارائه ی ویژگی هایی از مشخصه های طیفی شرایطی را برای حل مساله عکس بدست می آوریم و الگوریتمی را برای یافتن جواب مساله عکس از روی تابع مشخصه ارائه می دهیم. سپس الگوریتمی عددی را برای بازیافت جواب ...
در این پایان نامه، ابتدا یک مسئله منظم استورم?لیوویل کسری مورد بررسی قرار می گیرد. ویژه جواب های این مسئله توابع غیرچندجمله ای به نام چندجمله ایهای کسری ژاکوبی هستند. این ویژه تابع ها نسبت به تابع وزن معادله استورم?لیوویل متعامد می باشند. روش هم مکانی طیفی با دقت نمایی برای حل مسائل مستقل از زمان و وابسته به زمان شامل معادلات دیفرانسیل جزئی با مشتق مرتبه کسری به کار می رود.
در این رساله معادله مرتبه دوم از نوع عملگر استورم - لیوویل در نظر می گیریم: -y+q(x)=lambdaphi^{2}(x)y, که در آن توابع phi^{2}(x) و q(x) به عنوان ضرایب معادله و تابع phi^{2}(x) تابع وزن است. معادله دارای تعداد متناهی نقطه برگردان می باشد و در این معادله فرم مجانبی جواب ها، توزیع مقادیر ویژه و فرم حاصلضربی جواب ها را بیان و بررسی می کنیم. یکی از اهداف ما این است با استفاده از ریشه های ...
در این تحقیق مساله مقدار مرزی استورم-لیوویل متقارن l=l(q(x),a,b) شامل یک معادله دیفرانسیل مرتبه دوم از نوع استورم-لیوویل روی یک بازه متناهی به همراه شرایط مرزی تفکیک ناپذیر را در نظر می گیریم که در آن پارامتر طیفی، a، b و q(x) حقیقی مقدار و تابع پتانسیلq(x) در بازه متناهی متقارن مرکزی می باشد. در ابتدا در حالتی که تابع وزن برابر یک است به معرفی یک مجموعه از جوابهای اسا...
در ابتدا معادله دیفرانسیل مرتبه دوم کلاسیک موسوم به استورم-لیوویل (1) را روی بازه مورد بررسی قرار داده و درباره ویژگیهای جواب آن مطالعه می کنیم که در این معادله و و یک پارامتر طیفی می باشد و سپس معادله (1) روی بازه با شرایط اولیه و شرط مرزی را در نظر می گیریم، در این حالت هدف ما مطالعه مقادیر ویژه مساله استورم-لیوویل است .
فرمول جدید اثر برای دسته های درجه دوم عملگر شرودینگر
مسائل مقدار مرزی-اولیه که شامل معادلات دیفرانسیل سهموی و هذلولوی هستند بعد از بکاربردن روش جداسازی متغیرها یا روش لاپلاس و فوریه، به یک مسئله طیفی (اشتورم-لیوویل) تبدیل می شوند. اینگونه مسائل اغلب در مکانیک کوانتوم در تعیین سطوح انرژی ظاهر می شوند. در این پایان نامه چند مسئله اشتورم-لیوویل وابسته به دو پارامتر بررسی می شود. در حالت خطی، با اعمال شرایط مرزی خطی عمومی وابسته به دو پارامتر، به حل ...
در این رساله ابتدا تابع بی اسپلاین خطی شبه متعامد و موجک آن را معرفی کرده و با استفاده از خواص این موجکها و با ساخت توابع دوگان برای این توابع به بررسی این نوع موجکها پرداخته و با استفاده از ماتریس عملیاتی مشتق کسری به حل مسائل مختلف کسری از جمله معادلات دیفرانسیل کسری خطی و غیرخطی و معادلات دیفرانسیل جزئی خطی کسری در بازه های متناهی می پردازیم سپس با معرفی توابع کاردینال چبیشف و بررسی خواص این...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید