نتایج جستجو برای: autoregressive conditional heteroskedasticity arch

تعداد نتایج: 93550  

در حال حاضر دقت برآورد ریسک پرتفوی برای مدیران سرمایه‌گذاری مسئله بسیار مهمی است انتخاب مدلی که واریانس را وابسته به زمان محاسبه می‌کندبه جای اینکه واریانس را ثابت در نظر می‌گیرد موجب مدل سازی بهتر داده ها در واقع هدف این پژوهش پیاده سازی یک روش ترکیبی محاسبه ارزش در معرض ریسک شرطی ([i]CVaR)است که تلاطم را در ویژگی خوشه‌ای مدل سازی کرده و مقدارCvaR را با در نظر گرفتن ویژگی دنباله پهنی به طور دق...

2010
Andrew Harvey

The asymptotic distribution of maximum likelihood estimators is derived for a class of exponential generalized autoregressive conditional heteroskedasticity (EGARCH) models. The result carries over to models for duration and realised volatility that use an exponential link function. A key feature of the model formulation is that the dynamics are driven by the score. Keywords: Duration models; g...

Journal: Iranian Economic Review 2006

The purpose of this study is to concentrate on the investigation of days-of-week effect on Tehran Stock Exchange and its comparison with other emerging markets. Using Classical Linear Regression (CLR) as well as Autoregressive Conditional Heteroskedasticity (ARCH) models it in indicated has indicated that there is significantly positive total return on Saturdays and significantly negative total...

In this study, by applyig a combination of Autoregressive Conditional Heteroskedasticity  and stochastic differential equations Models with Markowitz model we estimate the optimal portfolio investment in the housing market are discussed. For this purpose, use of assets, stock prices, housing prices, the price of coins and bonds during the period 1999-2013 with the monthly data. Autoregre...

2005
R. Glen Donaldson Mark J. Kamstra Lisa Kramer Alan Kraus William T. Moore

We investigate empirically the role of trading volume (1) in predicting the relative informativeness of volatility forecasts produced by autoregressive conditional heteroskedasticity (ARCH) models versus the volatility forecasts derived from option prices, and (2) in improving volatility forecasts produced by ARCH and option models and combinations of models. Daily and monthly data are explored...

2006
Manabu Asai MANABU ASAI

Autoregressive conditional heteroskedasticity (ARCH) models pioneered by Engle (1982) and their extended version have been proven to be very successful in modeling the volatility of financial time series; see Bollerslev et al. (1994). Bayesian inference on ARCH models has been implemented using the importance sampling technique proposed by Geweke (1989) and more recently using Markov chain Mont...

Journal: :Jurnal Sains dan Seni ITS (e-journal) 2023

Saham merupakan produk pasar modal yang menjadi salah satu instrumen investasi. Banyak investor memilih saham sebagai investasi dikarenakan memberikan keuntungan menarik. Metode estimasi metode tepat bagi para untuk memprediksi harga sehingga dapat membantu mengoptimalkan keuntungannya. Penelitian ini bertujuan menentukan model terbaik dari data menggunakan ARCH-GARCH dan mendapatkan hasil Kalm...

2004
Adolfo M. de Guzman Adolfo M. De Guzman Dennis S. Mapa Joselito C. Magadia

A new variant of the ARCH class of models for forecasting conditional variance, to be called the Generalized AutoRegressive Conditional Heteroskedasticity Parkinson Range (GARCH-PARK-R) Model, is proposed. The GARCH-PARK-R model, utilizing the extreme values, is a good alternative to the Realized Volatility that requires a large amount of intra-daily data, which remain relatively costly and are...

Journal: :iranian economic review 0

the purpose of this study is to concentrate on the investigation of days-of-week effect on tehran stock exchange and its comparison with other emerging markets. using classical linear regression (clr) as well as autoregressive conditional heteroskedasticity (arch) models it in indicated has indicated that there is significantly positive total return on saturdays and significantly negative total...

Journal: :J. Multivariate Analysis 2013
Mika Meitz Pentti Saikkonen

We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial application...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید