نتایج جستجو برای: عدد پایداری احاطه گری رومن علامتدار تام
تعداد نتایج: 49072 فیلتر نتایج به سال:
فرض g گرافی با مجموعه رئوس v و مجموعه یال های e باشد، زیر مجموعه d از رئوس g یک مجموعه احاطه گر همبند مضاعف برای g است، هرگاه d یک مجموعه احاطه گر بوده و زیر گراف های القایی g[d] و g[v-d] همبند باشند.می نیمم اندازه یک مجموعه احاطه گر همبند مضاعف را عدد احاطه ای همبند مضاعف می نامیم.
فرض کنید گرافی با مجموعه رأس های و مجموعه یال های باشد. زیر مجموعه مجموعه احاطه گر است، هرگاه هر رأس در مجاور با حداقل یک رأس در باشد. عدد احاطه ای ? ? مینیمم کاردینال مجموعه های احاطه گر در است. مجموعه احاطه گر همبند از گراف را مجموعه احاطه گر فراگیر همبند - مجموعه در نامند هرگاه مجموعه احاطه گر همبند در نیز باشد. عدد احاطه ای فراگیر همبند? ? مینیمم کاردینال مجموعه های احاطه گر فراگیر همبند در...
در این پایان نامه به بررسی نامساوی های نوردهاوس-گادووم بر روی دو تعریف اساسی احاطه کنندگی و احاطه کنندگی کلی پرداخته شده است. در گراف g یک زیرمجموعه از مجموعه رأس های گراف g را یک مجموعه احاطه کننده می گوییم، هرگاه هر رأس v ?v(g)-s با حداقل یکی از رئوس s مجاور باشد، و مجموعه ی s?v(g) را مجموعه احاطه کننده کلی می گوییم، هرگاه هر رأس v ?v(g) با حداقل یکی از رئوس s مجاور باشد.
در این پایانامه کرانهای بالا و پایین برای عدد k-احاطه ای ارایه میکنیم.
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
عدد احاطه گر یکی از پارامترهای مهم در نظریه گراف است. زیر مجموعه ای d از مجموعه رئوس گراف (g=(v,e را یک مجموعه احاطه گر برای گراف گویند هرگاه هر رأس خارج d حداقل یک همسایه داخل آن داشته باشد. مقدار کمینه اندازه چنین مجموعه هایی عدد احاطه گر نامیده میشود. در بررسی این پارامتر یافتن کران های بالا و پایین اهمیت و کاربرد دارد. انواع عدد احاطه گر با قرار دادن شرایطی روی d تعریف میشود. در این پایان ن...
...
احاطه کننده یکی از مفاهیم بنیادین در نظریه گراف است که دارای کاربردهای مختلف در شبکه های تک کاره و بی سیم، شبکه های بیولوژیکی، محاسبات توزیع شده، شبکه های اجتماعی و گراف های وب می باشد. مجموعه های احاطه کننده همچنین به عنوان مدل هایی برای تسهیلات مساله های موقعیت (تعیین محل) در پژوهش عملیاتی استفاده می شوند. از جمله کاربردهایی که برای این مفهوم می توان نام برد، استفاده از آن در شبکه های ارتباطی...
این پایان نامه، مشتمل بر 3 فصل است. در فصل اول تعاریف مقدماتی و قضایای پایه ای را بیان می کنیم. سپس در فصل دوم عدد احاطه ای ضعیفاً همبند و در فصل سوم عدد زیرتقسیم احاطه ای ضعیفاً همبند را بررسی نموده و کران هایی برای آن ها ارائه می کنیم. همچنین مقدار دقیق این پارامتر ها را برای برخی از گراف ها بدست می آوریم. فرض کنید g یک گراف با مجموعه رأس های (v(g و مجموعه یال های (e(g باشد. زیر مجموعه s از رأ...
فرض کنید g گرافی با مجموعه رئوس v باشد. زیرمجموعه d از v یک مجموعه احاطه گر است هرگاه هر راس از v-d با راسی از d مجاور باشد. افراز دماتیک رئوس عبارت است از افراز رئوس به مجموعه های احاطه گر. بیشترین تعداد مجموعه در چنین افرازی، عدد دماتیک g نامیده میشود. فرض گنید f تابعی باشد که به رئوس گراف مقادیر 0، 1 و 2 را نسبت می دهد. هرگاه هر راس با مقدار 0 با راسی با مقدار 2 مجاور باشد، به چنین تابعی تا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید