نتایج جستجو برای: کمر گراف
تعداد نتایج: 4495 فیلتر نتایج به سال:
چکیده فرض کنید r یک حلقه و g یک گراف باشد که مجموعه رئوس آن عناصر حلقه r هستند و دو رأس x,y در g مجاورند هر گاه x+y ?z(r). در این صورت گراف g را گراف کلی می نامیم. در این پایان نامه گراف کلی را روی حلقه جابجایی و یکدار r و برخی زیر مجموعه های آن از جمله z(r) و reg (r) مورد بررسی قرار می دهیم. اساساً بررسی گراف کلی به دو دسته تقسیم شده است که این تقسیم بندی به ایده آل بودن و یا نبودن z(r) بستگی ...
فرض کنیم r حلقه ای جابه جایی و یکدار باشد.در این پایان نامه گراف ایده آل های پوچ ساز یکدیگر r را مطالعه می کنیم.این گراف را با علامت (ag(r نشان می دهیم که گرافی غیر جهت دار با مجموعه رئوس a(r)*=a(r)-{(0)} است. که در آن a(r) مجموعه همه ایده آل هایی از r است که دارای پوچ ساز ناصفر باشند.دو راس iو j در این گراف مجاورند اگر و فقط اگر ij=0 به طور خلاصه مهم ترین ویژگی های مورد بررسی در این پایان نام...
در این پایان نامه گراف اشتراکی زیرمدول های یک مدول را بررسی می کنیم. گراف اشتراکی r-مدول m را با g(m) نشان می دهیم که عبارت است از: گرا ف ساده ی بدون جهت که رأس های آن در تناظر یک به یک با همه ی زیر مدول های غیر بدیهی m هستند و دو رأس متمایز، مجاور هستند اگر و تنها اگر زیر مدول های متناظر آن ها از m اشتراک غیر تهی داشته باشند. همچنین همه ی مدول هایی که گراف اشتراک زیرمدول های آن ناهمبند است را ...
در سر تا سر این پایان نامه تمام حلقه ها جابجایی و یکدار هستند و همه گراف ها ساده (غیر جهت دار و بدون طوقه ) در نظر گرفته می شوند. هدف از این پایان نامه تحقیق در مورد ویژگی های خاصی از گراف های مقسوم علیه صفر است. در فصل اول ابتدا به معرفی مفهوم گراف مقسوم علیه صفر می پردازیم. همچنین ضمن تعریف کمر گراف مقسوم علیه صفر، به تعیین آن برای حلقه های مختلف خواهیم پرداخت. در فصل دوم به بررسی ویژگی های گ...
در این پایان نامه کران های بالا و پایینی برای ظرفیت تضمین شده تصحیح خطا تحت الگوریتم کدگشایی معکوس کننده بیتی برای کدهای ldpc وgldpc معرفی می شود. دو دسته از کدهای ldpc که در این راستا مورد بررسی قرار می گیرد، یکی کدهای ldpc چپ-منظم و دیگری کدهای gldpc چپ-منظم و راست-یکنواخت است. کران پایینی براساس کران مور برای اندازه مجموعه گره های متغیری که توسط فاکتور ?/43 بسط داده می شود، معرفی می گردد. ای...
فرض کنیم g یک گروه و (z(g مرکز گروه باشد. دراین صورت گراف جابه جایی وابسته به گروه g که با ?_g نمایش داده می شود بدین صورت تعریف می کنیم که رئوس آن عناصر غیر مرکزی یعنی (g(g می باشند و دو رأس x و y به یکدیگر وصل می باشند هرگاه xy=yx. در این پایان نامه همبندی، قطر، کمر و عدد استقلال گراف جابه جایی هنگامی که مرکز گروه بدیهی باشد، بررسی می شود. در انتها گراف جدید ?^g-غیر جابه جایی را معرفی و سپس ب...
فرض کنید r یک حلقه جابه جایی و یکدار باشد و j(r) ایده آل جیکوبسن r باشد. گراف جیکوبسن حلقه r که با $mathfrack{j_r}$ نشان داده می شود، گرافی است با مجموعه رئوس r j(r) به طوری که دو رأس متمایز x و y به یکدیگر متصلند اگر 1-xy عنصری غیر یکه از r باشد. در این رساله به بررسی برخی ویژگی های گراف جیکوبسن از قبیل همبندی، مسطحی و تام بودن می پردازیم. همچنین پایاهای عددی از قبیل قطر، کمر...
گراف توانی متناظر با گروه g، گرافی است که مجموعه رئوس آن گروه g است و دو عنصرx و y از gمجاورند اگر یکی توانی از دیگری باشد. در این پایان نامه گراف توانی گروه های از مرتبه ی 2pq را بررسی می کنیم. نشان می دهیم چه عناصری از گراف توانی گروه های از مرتبه ی 2pqبا یک دیگر مجاور هستند. نمایش هندسی گراف توانی این خانواده از گروه ها را در صفحه رسم کرده، ماتریس مجاورت آن ها را به دست می آوریم. هم چنین نشا...
رنگ آمیزی مجازی از گراف g را b-رنگ آمیزی گویند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. به بزرگ ترین عدد طبیعی k که گراف g، یک b-رنگ آمیزی با k رنگ داشته باشد، عدد b-رنگی گراف g گوییم و آن را با(?(g نشان می دهیم. در این پایان نامه به بررسی برخی ویژگی ها و قضیه ها در ارتباط با b-رنگ آمیزی گراف ها می پردازیم. ابتدا ارتباط بین اندازه، کمر و قطر با...
در سراسر این پایان نامه یک حلقهی جابجایی و یکدار میباشد و منظور از عناصر ناصفر حلقهی است. فرض کنید ( مرتبه) که در آن . گراف حاصلضرب داخلی تام ، گراف (غیر جهت دار ) با رئوس میباشد و دو رأس متمایز و در این گراف مجاورند هرگاه . اگر را مجموعهی همهی مقسوم علیههای صفر در نظر بگیریم، گراف حاصلضرب نقطهای مقسومعلیه صفر که با نشان داده میشود زیرگرافی از با رئوس می ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید