نتایج جستجو برای: signed total italian k dominating function
تعداد نتایج: 2284381 فیلتر نتایج به سال:
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
Let $G$ be a finite and simple graph with vertex set $V(G)$. A nonnegative signed total Roman dominating function (NNSTRDF) on a graph $G$ is a function $f:V(G)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N(v)}f(x)ge 0$ for each $vin V(G)$, where $N(v)$ is the open neighborhood of $v$, and (ii) every vertex $u$ for which $f(u...
An outer-independent double Italian dominating function (OIDIDF)on a graph $G$ with vertex set $V(G)$ is a function$f:V(G)longrightarrow {0,1,2,3}$ such that if $f(v)in{0,1}$ for a vertex $vin V(G)$ then $sum_{uin N[v]}f(u)geq3$,and the set $ {uin V(G)|f(u)=0}$ is independent. The weight ofan OIDIDF $f$ is the value $w(f)=sum_{vin V(G)}f(v)$. Theminimum weight of an OIDIDF on a graph $G$ is cal...
in this paper, we define the common minimal dominating signed graph of a given signed graph and offer a structural characterization of common minimal dominating signed graphs. in the sequel, we also obtained switching equivalence characterizations: $overline{s} sim cmd(s)$ and $cmd(s) sim n(s)$, where $overline{s}$, $cmd(s)$ and $n(s)$ are complementary signed gra...
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
A signed Roman dominating function (SRDF) on a graph G is a function f : V (G) → {−1, 1, 2} such that u∈N [v] f(u) ≥ 1 for every v ∈ V (G), and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on G with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (G), is called a sig...
For a positive integer k, a total {k}-dominating function of a graph G without isolated vertices is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (G), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) is the open neighborhood of v. The weight of a total {k}-dominating function f is the value ω(f) = ∑ v∈V f(v). The total {k}-dominati...
Domination is a rapidly developing area of research in graph theory, and its various applications to ad hoc networks, distributed computing, social networks and web graphs partly explain the increased interest. This thesis focuses on domination theory, and the main aim of the study is to apply a probabilistic approach to obtain new upper bounds for various domination parameters. Chapters 2 and ...
A two-valued function f defined on the vertices of a graph G (V, E), I : V -+ {-I, I}, is a signed dominating function if the sum of its function values over any closed neighborhood is at least one. That is, for every v E V, f(N[v]) 2: 1, where N(v] consists of v and every vertex adjacent to v. The of a signed dominating function is ICV) = L f( v), over all vertices v E V. The signed domination...
Let G be a graph. A function f : V (G) → {−1, 1} is a signed kindependence function if the sum of its function values over any closed neighborhood is at most k − 1, where k ≥ 2. The signed k-independence number of G is the maximum weight of a signed k-independence function of G. Similarly, the signed total k-independence number of G is the maximum weight of a signed total k-independence functio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید