نتایج جستجو برای: encoder neural networks

تعداد نتایج: 643221  

Journal: :CoRR 2006
Stephen P. Luttrell

This paper introduces an objective function that seeks to minimise the average total number of bits required to encode the joint state of all of the layers of a Markov source. This type of encoder may be applied to the problem of optimising the bottom-up (recognition model) and top-down (generative model) connections in a multilayer neural network, and it unifies several previous results on the...

2016
John Lambert

We address the image captioning task by combining a convolutional neural network (CNN) with various recurrent neural network architectures. We train the models on over 400,000 training examples ( roughly 80,000 images, with 5 captions per image) from the Microsoft 2014 COCO challenge. We demonstrate that stacking a 2-Layer RNN provides better results on image captioning tasks than both a Vanill...

2016
Raghav Gupta Nihit Desai

Understanding textual entailment and contradiction is considered fundamental to natural language understanding. Tree-recursive neural networks, which exploit valuable syntactic parse information, achieve state-of-the-art accuracy among pure sentence encoding models for this task. In this course project for CS224D, we explore two extensions to tree-recursive neural networks deep TreeLSTMs and at...

Journal: :CoRR 2017
Yingbo Zhou Utkarsh Porwal Roberto Konow

In this paper, we reformulated the spell correction problem as a machine translation task under the encoder-decoder framework. This reformulation enabled us to use a single model for solving the problem that is traditionally formulated as learning a language model and an error model. This model employs multi-layer recurrent neural networks as an encoder and a decoder. We demonstrate the effecti...

Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...

2000
R. LOGESWARAN

Neural networks are a popular technology that exploits massive parallelism and distributed storage and processing for speed and error tolerance. Most neural networks tend to rely on linear, step or sigmoidal activation functions for decision making. The generalised regression neural network (GRNN) is a radial basis network (RBN) which uses the Gaussian activation function in its processing elem...

Journal: :CoRR 2017
Ji Feng Zhi-Hua Zhou

Auto-encoding is an important task which is typically realized by deep neural networks (DNNs) such as convolutional neural networks (CNN). In this paper, we propose EncoderForest (abbrv. eForest), the first tree ensemble based auto-encoder. We present a procedure for enabling forests to do backward reconstruction by utilizing the equivalent classes defined by decision paths of the trees, and de...

2016
Xian-Qiong Cheng Qi-He Liu Ping-Ping Li

Crustal thickness is an important factor affecting lithosphere structure and therefore deep geodynamics. In this paper, we propose to apply deep learning neural networks called stacked sparse 10 auto-encoder to obtain crustal thickness for eastern Tibet and western Yangtze craton. Firstly taking phase and group velocities simultaneously as input and theoretical crustal thickness as output, we c...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سیستان و بلوچستان - دانشکده مهندسی عمران 1391

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

2018
Housen Li Johannes Schwab Stephan Antholzer Markus Haltmeier

Recovering a function or high-dimensional parameter vector from indirect measurements is a central task in various scientific areas. Several methods for solving such inverse problems are well developed and well understood. Recently, novel algorithms using deep learning and neural networks for inverse problems appeared. While still in their infancy, these techniques show astonishing performance ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید