نتایج جستجو برای: معادلات انتگرال فردهلم نوع دوم
تعداد نتایج: 213879 فیلتر نتایج به سال:
چکیده در این پایان نامه، معادلا ت انتگرال فازی، فردهلم نوع دوم وهمچنین معادلات انتگرال فازی ولترا مورد بحث وبررسی قرار می گیرد، و جواب دقیق و تقریبی با هم مقایسه شده اند. روش های به کار رفته عبارتند از روش تجزیه آدومیان، روش تقریب های متوالی، روش جایگذارهای متوالی و طرح تقریبی متوالی تیلور. بدین منظور در فصل اول پیشنیازها و تعاریف وقضایای وجودی آورده شده اند. در فصل دوم حل معادلات انتگرال ...
در این پایان نامه یک نقریب عددی بر اساس روش درونیابی گاوسی برای حل معادله انتگرال فردهلم نوع دوم معادله انتگرال غیر خطی از نوع همرشتاین و معادله انتگرال ولترای نوع دوم به دست می آوریم. همچنین همگرایی روش گاوسی را به طور تحلیلی مورد مطالعه قرار می دهیم. برای نشان دادن دقت و کارایی روش روش گاوسی برای معادلات ذکر شده به کار برده شده است.
در این پایان نامه روش چندجمله ای های چبیشف برای حل معادلات انتگرال فردهلم و ولترا خطی و غیرخطی،معادلات انتگرال-دیفرانسیل فردهلم-ولترا خطی معرفی شده است. روش بر اساس نقاط کالوکیشن چبیشف پایه گذاری شده است. این روش معادلات انتگرال را به دستگاه معادلات جبری تبدیل می کند که مجهول های معادله، ماتریس ضرایب چبیشف می باشد و به این ترتیب جواب مسائل بر حسب سری های متناهی از چندجمله ای های چبیشف بدست می آید.
در این پایان نامه به معرفی روش بسط سری-تیلور برای حل عددی معادلات انتگرال ولترا و فردهلم و معادلات انتگرو-دیفرانسیل ولترا و فردهلم می پردازیم. با استفاده از این روش ابتدا جواب مساله را بر حسب بسط سری-تیلور می نویسیم و سپس با جایگذاری در معادلات انتگرال و معادلات انتگرو-دیفرانسیل، به یک دستگاه معادلات جبری می رسیم که با حل دستگاه معادلات جبری بدست آمده تقریب خوبی از جواب معادله انتگرال و معادله ...
در این پایان نامه ، ابتدا به معرفی معادلات انتگرال و انواع آن می پردازیم. درفصل دوم پیش نیازهایی که در فصل های بعدی لازم است را ارائه می نماییم. در فصل سوم و چهارم معادلات انتگرال فردهلم و ولترا را با استفاده از روشهای تحلیلی و عددی مختلفی از جمله، روش های تصویری، روش گالرکین، روش هم محلی و چند جمله ای های انتقال یافته لژاندر حل کرده ایم . سرانجام در فصل پنجم، برای حل معادلات انتگرال دیفرانسی...
هدف اصلی در این مقاله حل معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی از مراتب بالا است. روش مبتنی بر بسط لژاندر با استفاده از نقاط هم محلی گاوس- لژاندر می باشد. در این روش سری لژاندر قطع شده جواب معادله را در نظر گرفته و معادله انتگرال- دیفرانسیل خطی و شرایط داده شده را به یک معادله ماتریسی تبدیل می کنیم، سپس با استفاده از نقاط هم محلی گاوس- لژاندر، معادله ماتریسی تبدیل به یک دستگاه از...
در این پایان نامه روش توابع دورگه ی لژاندر- ضربه ای قطعه ای برای حل عددی معادلات انتگرال ولترا و فردهلم نوع دوم بیان شده است. این روش یک روش عملگری برای حل معادلات انتگرال است که با استفاده از ماتریس های عملگری انتگرالی و ضربی، معادلات انتگرال را به یک دستگاه معادلات جبری حل پذیر تبدیل می کند. در ادامه چند روش دیگر که اساس کار آنها نیز استفاده از ماتریس های عملگری است، برای حل عددی ای...
دو الگوریتم جدید براساس موجک های هار ارایه شده است. الگوریتم اول برای حل عددی معادلات انتگرال فردهلم غیرخطی نوع دوم و دومی برای حل عددی معادلات انتگرال ولترای غیرخطی نوع دوم به کار برده شده است. این روش ها جهت بکارگیری و استفاده از ویژگی های خاص موجک های هار در هر دو حالت یک و دو بعدی طراحی شده است. فرمول هایی برای محاسبه ی ضرایب هار بدون حل دستگاه معادلات به دست آمده اند. سپس این فرمول ها در ...
در این پایان نامه ابتدا مفاهیم مقدماتی پیش نیاز برای موضوع مورد بحث ارائه می شود که عبارتند از معادلات انتگرال خطی فردهلم، معادلات انتگرال خطی ولترا، معادلات انتگرال-دیفرانسیل، موجک هار و روش برویدن. در فصل دوم به حل عددی معادلات انتگرال فردهلم غیر خطی نوع دوم با استفاده از موجک هار می پردازیم.به این صورت که ابتدا تقریب توابع $ f(x) $, $ k(x,t) $ و $ u(x) $ با استفاده از موجک هار محا...
در این پایان نامه، ابتدا به معرفی انواع مختلف معادلات انتگرال و توابع پایه ای شعاعی می پردازیم. سپس از توابع پایه ای شعاعی و روش هم محلی برای حل تقریبی این نوع معادلات استفاده می کنیم. در ادامه بحث، انواع معادلات انتگرال دوبعدی فردهلم، ولترا و ولترا- فردهلم را مورد بررسی قرار می دهیم. در واقع هدف اصلی پایان نامه حل عددی انواع معادلات انتگرال روی نواحی مستطیلی در ابعاد بالاتر از یک و روی نواحی غ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید