نتایج جستجو برای: group order
تعداد نتایج: 1814153 فیلتر نتایج به سال:
The MOR cryptosystem [9] is a natural generalization of the El-Gamal cryptosystem to non-abelian groups. Using a p-group, a cryptosystem was built in [4]. It seems resoanable to assume the cryptosystem is as secure as the El-Gamal cryptosystem over finite fields. A natural question arises can one make a better cryptosystem using p-groups? In this paper we show that the answer is no.
Suppose that is a finite group. Then the set of all prime divisors of is denoted by and the set of element orders of is denoted by . Suppose that . Then the number of elements of order in is denoted by and the sizes of the set of elements with the same order is denoted by ; that is, . In this paper, we prove that if is a group such that , where , then . Here denotes the family of Suzuk...
this study investigated how group formation method, namely student-selected vs. teacher-assigned, influences the results of the community model of teaching creative writing; i.e., group dynamics and group outcome (the quality of performance). the study adopted an experimental comparison group and microgenetic research design to observe the change process over a relatively short period of time. ...
textbooks play a crucial role in language learning classrooms. the problem is that among the great quantity of available textbooks on the market which one is appropriate for a specific classroom and a group of learners. in order to evaluate elt textbooks, theorists and writers have offered different kinds of evaluative frameworks based on a number of principles and criteria. this study evaluate...
The prime graph of a finite group $G$ is denoted by $Gamma(G)$ whose vertex set is $pi(G)$ and two distinct primes $p$ and $q$ are adjacent in $Gamma(G)$, whenever $G$ contains an element with order $pq$. We say that $G$ is unrecognizable by prime graph if there is a finite group $H$ with $Gamma(H)=Gamma(G)$, in while $Hnotcong G$. In this paper, we consider finite groups with the same prime gr...
One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let be a finite group. We denote by the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if is a group with an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید