نتایج جستجو برای: laplace and hankel transforms
تعداد نتایج: 16832354 فیلتر نتایج به سال:
The present work is aimed at analyzing the thermoelastic disturbances in a circular plate of finite thickness and infinite extent subjected to constant initial temperature and axisymmetric heat supply. Integral transform technique is used. Analytic solutions for temperature, displacement and stresses are derived within the context of unified system of equations in generalized thermoelasticity i...
In this study, the second type of Green and Naghdi's thermoelasticity theory is applied to present the vibration of a nanobeam subjected to rectified sine wave heating based upon the nonlocal thermoelasticity theory. Both Young's modulus and thermal conductivity are considered to be linear functions of the temperature. The Laplace transform domain is adopted to solve the governing partial diffe...
An analytical solution is developed for three-dimensional flow towards a partially penetrating largediameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone foll...
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
although elzaki transform is stronger than sumudu and laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. in this paper, a method is introduced to find that a differential equation by elzaki transform can be solved?
Pulsatile flow of blood through a porous medium has been studied under the influence of periodic body acceleration by considering blood as a couple stress, incompressible, electrically conducting fluid in the presence of magnetic field. An exact solution of the equation of motion is obtained by applying the Laplace and finite Hankel transforms. The expressions for axial velocity, flow rate, flu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید