نتایج جستجو برای: system of functional integral equations

تعداد نتایج: 21411169  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1393

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

Somayeh Nemati Y. Ordokhani

In this paper, a method for finding an approximate solution of a class of two-dimensional nonlinear Volterra integral equations of the first-kind is proposed. This problem is transformedto a nonlinear two-dimensional Volterra integral equation of the second-kind. The properties ofthe bivariate shifted Legendre functions are presented. The operational matrices of integrationtogether with the produ...

In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...

This article proposes an optimal method for approximate answer of stochastic Ito-Voltrra integral equations, via rationalized Haar functions and their stochastic operational matrix of integration. Stochastic Ito-voltreea integral equation is reduced to a system of linear equations. This scheme is applied for some examples. The results show the efficiency and accuracy of the method.

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

Journal: :iranian journal of science and technology (sciences) 2012
g. b. loghmani

in this paper, an effective direct method to determine the numerical solution of linear and nonlinear fredholm and volterra integral and integro-differential equations is proposed. the method is based on expanding the required approximate solution as the elements of chebyshev cardinal functions. the operational matrices for the integration and product of the chebyshev cardinal functions are des...

Journal: :نظریه تقریب و کاربرد های آن 0
ش جوادی دانشگاه خوارزمی تهران ج سعیدیان دانشگاه خوارزمی تهران ف صفری دانشکده ریاضی دانشگاه خوارزمی تهران

an ecient method, based on the legendre wavelets, is proposed to solve thesecond kind fredholm and volterra integral equations of hammerstein type.the properties of legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known newton's method. examples assuring eciencyof the method and ...

د. میرزایی ل. هوشنگیان

This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.

L. Shiri M. ‎Zarebnia,

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید