نتایج جستجو برای: فضاهای توپولوژی
تعداد نتایج: 10073 فیلتر نتایج به سال:
این پایان نامه به مطالعه توپولوژی گروهی روی گروه بنیادی می پردازد. این مطالعات بیان کننده خواص موضعی فضاهاست که با نظریه ی فضاهای پوششی و هموتوپی قابل بیان نیست. واضح است که نتایج بدست آمده از بررسی گروه بنیادی به عنوان خارج قسمت فضای حلقه ها، اغلب گروه توپولوژیک نیست. از گروههای توپولوژیکی برای ساخت یک توپولوژی استفاده می کنیم که گروه بنیادی هر فضا را به ساختار گروه توپولوژیکی تبدیل می کند. یک...
بهینه سازی توپولوژی براساس قابلیت اعتماد، منجر به یک توپولوژی بهینه با ارضای قیودی که شامل عدم قطعیت متغیرهاست، میگردد. به دلیل عدم قطعیتهای ذاتی از قبیل بارگذاری خارجی، خواص مصالح و کیفیت ساخت، نمونه های اولیه و اعضا تولید شده ممکن است عملکردهای مورد نیاز را ارضا نکنند. در بهینه سازی توپولوژی بر اساس قابلیت اعتماد، هرکدام از این پارامترهای عدم قطعیت به عنوان متغیر تصادفی در نظر گرفته میشود ...
بهینهسازی توپولوژی بر اساس قابلیت اطمینان (rbto) برای در نظر گرفتن عدم قطعیت، در متغیرهای طراحی استفاده میشود. در این مقاله نشان داده می شود که گاهی اوقات بهینه سازی فرکانس ممکن است سازه ای با سختی کم یا برعکس بهینه سازی سختی، سازه ای با فرکانس پایین تولید کند. در این مورد، بهینه سازی چندهدفه برای هر دو سختی و فرکانس استفاده می شود. در این مقاله (rbto) با استفاده از بهینهسازی دو جهتی تکاملی ...
متن حاضر بخشی از یک تحقیق موضوعی پیرامون مساله شمارش توپولوژی ها روی یک مجموعه متناهی است که شامل: ویژگی های مشبکه توپولوژی ها، خواص توپولوژی های AT (اصلی)، معادل بودن این مساله با شمارش پیش ترتیب ها روی n نقطه، نحوه ارتباط مفاهیم توپولوژیکی روی یک مجموعه متناهی و نتایج به دست آمده برای n نابیشتر از 16 می باشد. متن از لحاظ مفاهیم توپولوژیکی خودکفا است.
تعریف: فضای توپولوژی x، یک فضای k تفکیک پذیر نامیده می شود، اگر به ازای هر دو نقطه متمایز a و b از آن، بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(b)=0. تعریف: فضای توپولوژی x با خاصیت t1 را، k- منظم می نامیم هرگاه به ازای هر x a و هر زیر مجموعه بسته که بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(x)=0 و b در x . ابتدا توجه می کنیم که فضاهای k- منظم غیر یکسان ریخت x و y موجودند که (x,k)c و...
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
در این پایان نامه، فضاهای نرمدار اقلیدسی -lفازی تعریف شده و فشردگی در این فضاها مورد بحث قرار گرفته است. چون فضاهای نرمدار فازی شهودی شرایط اضافی داشتند یک نظریه ی اصلاح شده و تعمیم یافته از فضا های نرمدار فازی شهودی، یعنی فضا های نرمدار -lفازی ارایه گردیده است. همچنین فضاهای نرمدار -lفازی و برخی نتایج مهم توپولوژی -lفازی القاء شده از فضای نرمدار اقلیدسیl-فازی مورد بررسی قرار گرفته...
این پایان نامه مشتمل بر پنج فصل است. در فصل اول به بیان مفاهیم اساسی مورد نیاز و بعضی از قضیه ها که در فصل های بعد به کار می روند، می پردازیم. فصل دوم به بررسی مولدها و فضاهای شبه فشرده اختصاص دارد. دراین بخش به بیان دو لم و یک قضیه اساسی دراین رابطه می پردازیم. فصل سوم این پایان نامه اختصاص به وجود شبه مکمل ها دارد. دراین بخش یک قضیه اساسی که وجود شبه مکمل برای مشبکه راثابت می کندآورده شده است...
تا پایان قرن نوزدهم، لهستان در عرصۀ ریاضیات چندان مورد توجه نبود. به یک باره، بعد از جنگ جهانی اول، مکتب ریاضیات لهستان شهرتی فراگیر یافت و دو شهر بدل به مراکز مهم ریاضیات شدند: یکی لووف که در آنجا استفان باناخ و جمعی دیگر دربارۀ آنالیز تابعی پژوهش می کردند و دیگری وارشاو که حوزۀ اصلی پژوهش در آنجا، نظریۀ مجموعه ها و توپولوژی بود. در این مقاله، تمرکز ما بر دستاوردهای لهستان در حوزۀ توپولوژی خ...
در این پژوهش به بررسی خواص نقطه ثابت برای نیم گروههای چپ معکوس پذیر در - فضاهای وابسته به جبرهای وان-نیومن می پردازیم. به خصوص کلاس همه عملگرهای کلاس اثر، همچنین جبرهای باناخ وابسته به گروه های به طور موضعی فشرده مورد توجه قرار می گیرند. برایرسیدن به این منظور ابتدا در فصل اول خاصیت نقطه ثابت و ساختارهای نرمال و نرمال ضعیف در فضاهای باناخ و در نیم گروه های چپ معکوس پذیر را مطرح کرده و به اخ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید