نتایج جستجو برای: مدل شبکه عصبی پرسپترون
تعداد نتایج: 147735 فیلتر نتایج به سال:
پیشبینی تقاضای آب در سیستمهای آبرسانی و توزیع آب، با توجه بهکمک شایانی که میتواند به مدیران این مجموعهها برای مدیریت بحران (حداقل و حداکثر مصرف) داشته باشد، از اهمیت بالایی برخودار است. پیچیدگی و تأثیر عوامل و پارامترهای مختلف بر میزان تقاضای آب در این سیستمها، سبب گردیده است که روشهای تحلیلی و ریاضی کارایی لازم را در این زمینه نداشته باشند. در این مقاله روش شبکههای عصبی مصنوعی برای برآو...
این مقاله با هدف شناسایی عوامل موثر بر ریسک اعتباری و ارائه مدلی جهت پیش بینی ریسک اعتباری و رتبه بندی اعتباری مشتریان حقوقی متقاضی تسهیلات یک بانک تجاری، با استفاده از روش تحلیل پوششی داده ها و رگرسیون لجستیک و شبکه عصبی و مقایسه این سه مدل انجام گرفته است. بدین منظور بررسی های لازم بر روی اطلاعات مالی و غیر مالی با استفاده از یک نمونه 146 تایی تصادفی ساده از مشتریان حقوقی متقاضی تسهیلات، صورت...
این مقاله با هدف شناسایی عوامل موثر بر ریسک اعتباری و ارائه مدلی جهت پیش بینی ریسک اعتباری و رتبه بندی اعتباری مشتریان حقوقی متقاضی تسهیلات یک بانک تجاری، با استفاده از روش تحلیل پوششی داده ها و شبکه عصبی و مقایسه این دو مدل انجام گرفته است. بدین منظور بررسی های لازم بر روی اطلاعات مالی و غیر مالی با استفاده از یک نمونه 146 تایی تصادفی ساده از مشتریان حقوقی متقاضی تسهیلات، صورت گرفت. در این پژو...
سابقه و هدف: در مدیریت منابع جنگلی، فرآیندهای تصمیمگیری مثل عوامل کیفی در معادلات ریاضی وارد نمیشوند. درسالهای اخیر شبکههای عصبی، کاربرد فراوانی در منابع جتگلی داشتهاند. این تحقیق به مقایسه شبکه عصبی پرسپترون چندلایه و شبکه تابع پایه شعاعی در پیشبینی حجم صنعتی و هیزمی درختان پرداخته است. بررسی عملکرد شبکههای مختلف و یافتن بهترین نوع آن برای دستیابی به نتایج قابل قبول و معتبر از اهداف این...
هدف اصلی این مطالعه پیش بینی میزان مصرف انرژی الکتریکی در بخش کشاورزی است. برای این منظور از روش های سری زمانی خود توضیح جمعی میانگین متحرک(arima) و شبکه ی عصبی مصنوعی استفاده شد. به منظور انجام بررسی، از داده های سالانه ی دوره ی 1346 تا 1383 برای برآورد و آموزش مدل ها و از داده های دوره ی 1384 تا 1387 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده شد. در این مطالعه معیارهای ارزیابی مختلفی ...
پیش بینی سود هر سهم و ارزیابی سودمندی سودهای گذشته برای پیش¬بینی، از دیرباز مورد توجه پژوهشگران بوده و بدین منظورازروش¬هاومدل¬های متفاوت به منظورپیش¬بینی سودهای آتی شرکت¬هااستفاده شده است. در این راستا، در پژوهش حاضر، مدل¬های سری زمانی توضیحی جمعی میانگین متحرک ARIMAوشبکه¬های عصبی مصنوعی از نوع پرسپترون چند لایه (MLP) مورداستفاده قرارگرفتند وپیش بینی¬هابرای سودهای فصلی شرکتهای پذیرفته شده درباز...
تعیین مقدار نفوذپذیری در یک حوزه آبخیز، کار چندان ساده ای نبوده و آنچه که از جنبه های نظری و عملی تفهیم می شود این است که، اگر بتوان به یک رقم یا عدد متوسطی از تخمین مقدار نفوذ دست یافت کار مهمی به انجام رسیده است. مدل های نفوذپذیری، نقش مهمی را در مدیریت منابع آب و خاک به عهده دارند، بنابراین، انواع مختلفی از این مدل ها، با درجات مختلفی از پیچیدگی، جهت رسیدن به این هدف، توسعه یافته اند. اکثر ر...
در این تحقیق، با استفاده از تصاویر TM و OLI لندست تغییرات رویداده در جنگلهای اطراف شهر خرمآباد بین سالهای 1365 تا 1397 موردبررسی قرار گرفت. بدین منظور پس از انجام تصحیحات هندسی و اتمسفری، تصاویر با استفاده از الگوریتم حداکثر احتمال در پنج کلاس با دقت کلی 95 درصد و ضریب کاپا 0.94 طبقهبندی شدند. با روی همگذاری تصاویر مقدار جنگلهای از بین رفته (34 کیلومترمربع) مشخص و بهعنوان متغیر وابسته ب...
در این مقاله از یک شبکه عصبی مصنوعی پرسپترون 3 لایه با 5 نرون در لایه مخفی جهت مدلسازی مقدار محتوای الکترون لایه یونوسفر (tec) استفاده شده است. بدین منظور از 25 ایستگاه gps شبکه ژئودینامیک کشور ایران در محدوده عرض جغرافیایی 24 الی 40 درجه و طول جغرافیایی 44 الی 64 درجه استفاده گردیده است. ارزیابی نتایج بدست آمده از شبکه عصبی مصنوعی مدلسازی شده برای این منطقه توسط 1 ایستگاه تست gps که مقادیر محت...
پژوهش حاضر به مطالعه پیش بینی شاخص قیمت سهام در بورس اوراق بهادار تهران به وسیله شبکه های عصبی و ارایه ی شواهدی مبنی بر رفتار آشوبناک شاخص قیمت در بورس اوراق بهادار می پردازد. دو مجموعه از داده ها برای ورودی شبکه عصبی انتخاب شده اند. وقفه های مختلفی از شاخص و عوامل کلان اقتصادی به عنوان متغیرهای مستقل. شبکه های عصبی به کار گرفته شده در این پژوهش از نوع پرسپترون چند لایه (mlp) است که به روش الگو...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید