نتایج جستجو برای: projective techniques

تعداد نتایج: 645909  

Journal: :bulletin of the iranian mathematical society 2013
h. cheng x. zhu

let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...

Journal: :iranian journal of fuzzy systems 2005
paul isaac

the concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. the notion of free fuzzy modules was introducedby muganda as an extension of free modules in the fuzzy context. zahedi and ameriintroduced the concept of projective and injective l-modules. in this paper we give analternate definition for projective l-modules. we prove that e...

Journal: :bulletin of the iranian mathematical society 0
z. ‎zhu department of mathematics,jiaxing university,jiaxing,zhejiang province,china,314001

let $r$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎a right $r$-module $m$ is called $(n‎, ‎d)$-projective if $ext^{d+1}_r(m‎, ‎a)=0$ for every $n$-copresented right $r$-module $a$‎. ‎$r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $r$-module is $(n‎, ‎d)$-projective‎. ‎$r$ ...

2004
Bruno Scárdua

We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...

2005
Joakim Nivre Jens Nilsson

In order to realize the full potential of dependency-based syntactic parsing, it is desirable to allow non-projective dependency structures. We show how a datadriven deterministic dependency parser, in itself restricted to projective structures, can be combined with graph transformation techniques to produce non-projective structures. Experiments using data from the Prague Dependency Treebank s...

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

ژورنال: پژوهش های ریاضی 2018

projective Ricci curvature. Then we characterize isotropic projective Ricci curvature of Randers metrics. we also show that Randers metrics are PRic-reversible if and only if they are PRic-quadratic../files/site1/files/0Abstract2.pdf

Journal: :categories and general algebraic structures with applications 2014
mohammad roueentan majid ershad

in this paper $s$ is a monoid with a left zero and $a_s$ (or $a$) is a unitary right $s$-act. it is shown that a monoid $s$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $s$-act is quasi-projective. also it is shown that if every right $s$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید