نتایج جستجو برای: شبکه های عصبی عمیق
تعداد نتایج: 491786 فیلتر نتایج به سال:
ساختمانهای مسکونی ایران، مطابق آمارهای موجود، بزرگترین مصرف کننده انرژی این کشور می باشند؛ فاکتورهای متعدد تاثیرگذار بر رفتار مصرف انرژی در ساختمانهای مسکونی، مسئله پیش بینی و ممیزی مصرف انرژی را به چالشی مهم در موسسات بهینه سازی مصرف تبدیل نمودهاند. از این رو مدیران در تلاشند تا با بهرهگیری از تکنیک های مناسب، فرآیند ممیزی و تعیین برچسب انرژی ساختمان های مسکونی را بهبود بخشند. ...
مدل سازی دبی رودخانه در مدیریت منابع آب و مدیریت ریسک از اهمیت بالایی برخوردار است. این امر در مناطق کوهستانی اهمیت بیشتری پیدا میکند زیرا بیشتر جمعیتهای پاییندست منطقه، وابستگی زیادی به کشاورزی و فعالیتهای تجاری مانند تولید برق دارند. در این زمینه، در سالهای اخیر، مدلهای یادگیری ماشینی به دلیل دقت بالا در پیشبینی از طریق یادگیری به-صورت جعبه سیاه مورد توجه زیادی قرار گرفتهاند. از این ...
این مقاله به امکان سنجی وجود آشوب در ساختار سیستم مولد قیمت نفت خام شاخصwti طی دوره 4 آوریل 1983 تا 13 ژانویه 2003 می پردازد. به این منظور از تخمین نمای لیاپانوف و بعد همبستگی به عنوان آزمون های مستقیم آشوب و آزمون های bds و شبکه عصبی جهت بررسی غیر خطی بودن ساختار سیستم استفاده شده است. نتایج تخمین نمای لیاپانوف و بعد همبستگی، وجود آشوب در سری زمانی را تایید کرده و تخمین آماره bds و شبکه عصبی، ...
در این تحقیق، کارآیی شبکه های عصبی مصنوعی به عنوان عامل انتگرالگیر از دسته معادلات دیفرانسیلی غیرخطی حاکم بر سینتیک شیمیایی احتراق در مدلسازی LES شعله پیش مخلوط مغشوش نشان داده شده است. آموزش شبکه عصبی مصنوعی براساس الگوریتم آموزشی خطای پس انتشار صورت گرفته است که در آن ضرایب مدل آموزشی به طور دینامیکی و سازگار با توپولوژی تابع خطا معین می شوند. جدول بانک اطلاعاتی آموزش شبکه عصبی براساس مطالعات...
در این مقاله یک شبکه عصبی سازنده جدید برای حل مساله فروشنده دوره گرد TSP ارائه شده است ساختار فیدبکی رقابتی این شبکه از مفاهیم شبکه های عصبی هایفیلد و کوهونن الهام گرفته شده است شبکه کوهونن با شیوه یادگیری رقابتی اش پاسخ های قابل قبولی به TSP ارائه می دهد اما سرعت همگرایی آن بسیار کم است در مقابل شبکه عصبی هایفیلد با ساختار فیدبکی خود دارای سرعت همگرایی مناسبی است اما پاسخ های آن از دقت کمی برخ...
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
امروزه سیستم های هوشمند کاربردهای فراوانی در امور مختلف بانکی و مالی پیدا کرده اند. بررسی و تصویب اعتبارات، یکی ازکاربردهای شبکه های عصبی است. از طرف دیگر محدودیت منابع در بخش مسکن و به تبع آن کمبود مسکن در کشور، تخصیصبهینه منابع را یک ضرورت نموده است. پژوهش حاضر با هدف ارائه مدل مناسب بررسی رفتار اعتباری مشتریان تسهیلات مصرفی تسهیلات خرید مسکن با استفاده از شبکه های عصبی جهت امتیازبندی اعتبار...
پیشبینی مؤلفههای باد از جمله سرعت باد یکی از عوامل مهم به خصوص در بحث تبخیر در یک حوزه آبخیز محسوب میگردد. در این مقاله سعی گردید، جهت افزایش کارایی مدلهای هوش مصنوعی، در پیشبینی سرعت باد، دو مدل شبکه عصبی و فازی-عصبی با تئوری موجک ترکیب شده و دو مدل هیبرید جدید ارائه گردید. در این تحقیق با استفاده از برخی پارامترهای اقلیمی ایستگاه همدیدی یزد از جمله سرعت باد، دمای متوسط، دمای بیشینه، رطو...
امروزه با پیشرفت تکنولوژی برای حل مسائلی که روابط دقیق ریاضی بین ورودی و خروجی برقرار نمی باشد از شبکه های عصبی مصنوعی استفاده می شود. در این پژوهش برای پیشبینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم دو شبکه عصبی پرسپترون چند لایه شامل شبکه عصبی مصنوعی پیشرو (FFANN) و شبکه عصبی آبشاری (CANN) پیشنهاد شد. برای بررسی صحت مدل ها، از 1251 داده آزمایشگاهی گردآوری شده از مقالات مختلف شامل کشش سطحی...
النینو از پدیده های مهم اقلیمی است که تأثیر زیادی بر متغیرهای اقلیمی نقاط مختلف کره زمین دارد. با توجه به نقش تبخیر در مطالعات منابع آب، بررسی تأثیر پدیده النینو بر این متغیر اقلیمی، از اهمیت شایانی برخوردار است. هدف از این پژوهش بررسی امکان برآورد تبخیر در ایستگاه همدید خرم آباد با استفاده از داده های النینو و با کمک مدل شبکه عصبی مصنوعی است. بدین منظور، داده های تبخیر ماهانه ایستگاه به مدت 29...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید