نتایج جستجو برای: خمینه ساساکی

تعداد نتایج: 308  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1390

این نوشته مطالعه ای اصولی از ساختارهای سایا با متر شبه ریمانی با تاکید بر شباهت و تفاوت های ‏آن با متر ریمانی خواهد داشت .‏ به خصوص مطالعه خواهد شد که هیچ خمینه شبه ریمانی سایا ی تخت از بعد بزرگتر از 5 وجود ‏ندارد .‏ ‏.خمینه های ریمانی با خمیدگی با خمیدگی ثابت، خمینه های سه بعدی موضعا متقارن با خمیدگی ‏برشی ثابت وخمینه های سه بعدی همگن لورنتزی سایا طبقه بندی خواهند شد .‏ کلید واژه :‏ خمینه ...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1391

چکیده: در این پایان نامه هدف مطالعه خمینه های کنموتسو با شرایط زیرمی باشد: r.r=lr q (g, r) , r.r=l q(s, r) , r.w=lw q (g, w) نشان می دهیم که هر خمینه نیم متقارن ، نیم متقارن ریچی ؛ هر خمینه شبه متقارن ، شبه متقارن ریچی ؛ هر خمینه نیم متقارن ریچی ، شبه متقارن ریچی؛همچنین هر خمینه نیم متقارن وایل ، شبه متقارن وایل است . ولی عکس این احکام درست نیستند . همچنین نتایج جالبی به صورت زیر به دست ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی 1393

فرم فضای ساساکین تعمیم یافته نخستین بار در [ 1] معرفی شده است . از آن در [ 2]و نامساوی چن در [ 3] و ساختار زیرمنیفلدهای شیب دار جانشین شده در[ ?]،cr-زیرمنیفلدهادر [ ?] بررسی شده اند.همچنین انحنای ریچی تعدادی از زیرمنیفلدها در[ 8] وهمدیسهای هموار وموضعا متقارن در[ 9] ،وضعیت های متقارن دیگر در[ 7]و غوطه وری حاصل ضرب تابدار در [ 10 ] مطالعه شده اند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1392

در این پایان نامه به مطالعه ابر رویه های فضا فرم های ساساکی پرداخته و این ابر رویه ها را در شرایطی چون خمیدگی ثابت هولومرفیک ضعیف، عملگر شکلی برگشتی، ‎d‎-برگشتی، موضعا متقارن بودن و همچنین با عملگر ژاکوبی تعویض پذیر روی میدان برداری مشخصه را مورد مطالعه و بررسی قرار می دهیم. بعلاوه ابررویه هایی با شرط خمیدگی هولومرفیک ضعیف ثابت را در فضای مختلط تصویری بررسی می کنیم. همچنین ابررویه های فضای کنمو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1391

میدان های برداری که شار آنها در هر نقطه طولپایی باشد دارای اهمیت بسیاری است و کاربرد های فراوانی در ریاضیات و فیزیک دارد. چنین میدان های برداری به افتخار ریاضیدان آلمانی، ویلهلم کیلینگ (wilhelm karl joseph killing (1847-1923) )، میدان برداری کیلینگ نامند. میدان های برداری کیلینگ (به ویژه با طول ثابت) در مرجع های زیادی مطالعه شده است، همچنین هندسه خمینه های ریمانی که میدان برداری کیلینگ می پذی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1392

روی خمینه های فرد بعدی یک ساختار تعریف شده است که تعمیم یافته ی چندین ساختار شناخته شده روی خمینه های تقریبا مختلط مانند ساختارهای ساساکی‏، شبه-ساساکی‏، ترانس ساساکی‏، کنموتسو و شبه همتافته است. این ساختار‏، یک ساختار شبه ساساکی تعمیم یافته یا به طور مختصر ساختار g.q.s نامیده می شود‏، که روی خمینه های متریک تقریبا سایا تعریف شده و در چندین شرط اضافی نیز صدق می کند. سپس توزیع d_1در نظر گرفته شده...

ژورنال: :فرهنگ و اندیشه ریاضی 2012
حامد فرهادپور

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم 1390

پنداریم ‎m‎ یک منیفلد ترنس‎‎ ساساکی باشد‎. در آغاز زیرمنیفلدهای شبه اسلنت از منیفلد ترنس‎‎ ساساکی ‎m‎ را تعریف می کنیم و سپس درباره شرایط انتگرال پذیری این گونه زیرمنیفلدها در منیفلد ترنس‎‎ ساساکی m‎ سخن به میان می آوریم. همچنین به پژوهش درباره زیرمنیفلدهای ضربی تابیده و زیرمنیفلدهای ضربی تابید‎ه‎ دوگانه از منیفلد‎‎های ترنس‎‎ ساساکی می پردازیم. نیز درباره وجود یا عدم وجود ‎ cr ‎‎‎زیرمنیفلدها در...

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

ژورنال: :فرهنگ و اندیشه ریاضی 0
حامد فرهادپور پژوهشگاه دانشهای بنیادی، پژوهشکده ریاضیات

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید