نتایج جستجو برای: خود رگرسیو میانگین متحرک انباشنه (ARIMA)
تعداد نتایج: 225776 فیلتر نتایج به سال:
یکی از روشهای مطرح در بررسی علمی بازار سرمایه استفاده از مدل سازهای اقتصاد سنجی می باشد . در پژوهشهای انجام شده اغلب مدلسازهای اقتصاد سنجی محدود، بدون مقایسه و بررسی میزان خطای پیشبینی سایر الگوریتمها ، مورد بررسی قرار گرفته اند . در این پژوهش برای رفع این نقیصه با اجرا و مقایسه روش های مطرح برروی سهم های منتخب و بر اساس پارامترهای ارائه شده کارا ترین الگوریتم مشخص گردیده است. از سوی دیگر اغل...
پیش بینی قیمت سهام در بورس اوراق بهادار تهران، به سرمایه گذاران درتصمیم گیری وپذیرش ریسک سهام کمک شایانی می کند. در این مقاله از سه روش اقتصادسنجی شامل الگوی خود رگرسیو (ar)، الگوی میانگین متحرک (ma) و الگوی خود رگرسیو میانگین متحرک انباشته (arima) به منظور پیش بینی قیمت سهام و انتخاب بهترین روش از میان روش های ذکر شده استفاده شده است. به این منظور داده های روزانه قیمت سهام شرکت کشاورزی و دامپر...
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته میشود، یکی از پرکاربردترین مدلها در پیشبینی سریهای زمانی است. اما پیش فرض اصلی این مدل خطی بودن سریهای زمانی میباشد. از سوی دیگر شبکهی عصبی یک تخمین زنندهی عمومی است که الگوهای غیر خطی را بسیار خوب مدلسازی مینماید. دانستن الگوی دادهها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...
در دنیای امروز به کارگیری روشهای کمی پیش بینی در زمینه های مختلف مورد توجه گسترده قرار گرفته است. تغییرات سریع محیطهای ناشناخته در دنیای واقعی و به ویژه بازارهای مالی سبب ایجاد مشکلاتی برای پیش بینی کنندگان به منظور تأمین داده های مورد نیاز شده است. مدلهای میانگین متحرک خود رگرسیون انباشته (arima) دارای محدودیت تعداد داده های گذشته بوده و شبکه-های عصبی مصنوعی (anns) نیز به منظور حصول نتایج دقیق...
قیمت نفت می تواند با اثرگذاری بر سایر منغیرهای اقتصادی، اقتصاد کشورهای جهان را تحت تاثیر قرار دهد. پیچیدگی ذاتی موجود در آن، باعث شده که این متغیر رفتاری آشوبناک از خود نشان دهد و این مسئله محققین را جهت ارائه پیش بینی دقیق با مشکلاتی مواجه کرده است. تاکنون مدلهای مختلفی جهت این امر ارائه شده است. در این میان مدل های فازی قادرند در شرایط عدم اطمینان و تعداد داده های کم نتایج قابل قبولی را از خو...
نرخ ارز و نوسانات آن به عنوان یکی از مهمترین مسائل بخش بازرگانی خارجی هر کشور از اهمیت ویژهای برخوردار است. عوامل زیادی همچون عوامل اقتصادی، سیاسی، و روانی بر نرخ ارز تاثیرگذار هستند و این عوامل خود باعث ایجاد شرایط نااطمینانی بیشتر میشوند. در این راستا تلاش سیاستگذاران در کاهش این نااطمینانی از طریق پیشبینی این متغیر باکمترین خطا بوده است. شبکههای عصبی مصنوعی از قابلیت بالایی در مدلسازی...
روند شاخص قیمت تولید کننده محصولات چوب و کاغذی وضعیت اقتصادی صنعت چوب و کاغذ را نشان می دهد و پیش بینی شرایط آینده آن ضروری است. هدف این تحقیق مقایسه دو روش پیش بینی شبکه عصبی مصنوعی و فرایند خود همبستگی جمعی میانگین متحرک برای پیش بینی شاخص قیمت تولید کننده محصولات چوب و کاغذ می-باشد . معیارهای ارزیابی کارایی و درصد خطای پیش بینی اندازه گیری شد. نتایج نشان می دهد که درصد خطای پیش بینی ها به وی...
یکی از روشهای مناسب در پیشبینی سری زمانی، تعمیم رفتار گذشته سری به آینده است. برای این منظور اولین قدم شناخت دقیق رفتار گذشته متغیر است. یکی از روشهای الگوسازی رفتار گذشته سری زمانی مدل خود توضیح جمعی میانگین متحرک (ARIMA) است. در این پژوهش از مدلهای ARIMA و ARFIMA برای پیشبینی قیمت هفتگی بنزین استفاده شد. همچنین پیشبینی مدل ARIMA با پیشبینی مدل خود توضیح کسری جمعی میانگین متحرک (ARFIMA)...
تورم به عنوان یکی از بنیادی ترین چالش های اقتصادی، در طول حیات اقتصادی هر کشور شناخته می شود، به همین دلیل پیش بینی روند تورم برای تنظیم سیاست های اقتصادی اهمیت به سزایی دارد. این نیاز موجب توجه جدی به کاربرد مدل های مختلف برای پیش بینی نرخ تورم شده است؛ و بدین منظور مدل های پیش بینی گوناگونی در رقابت با یکدیگر توسعه یافته اند. از این رو این پژوهش با هدف پیش بینی ماهیانه نرخ تورم در ایران برای ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید