نتایج جستجو برای: رویه ی ریمان

تعداد نتایج: 108861  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392

رویه های ریمان، رویه های حقیقی جهت پذیری می باشند که در واقع یک ساختار مختلط روی آنها قرار داده شده است. پوانکاره در سال 1907 یک رده بندی برای رویه های ریمان را مطرح نمود که به قضیه یکنواخت سازی مشهور است. در قضیه یکنواخت سازی رویه های ریمان، نشان داده می شود که هر رویه ریمان همبند ساده، هم ارز همدیس با s2، h2 و یا c ‎ می باشد که اولین نتیجه آن این است که هر رویه ریمان ایزومتریک با یک فضای خارج...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کردستان 1389

ریشه- تقریب پذیری گروه های توپولوژیک در رابطه با توابع محدب در گروه های توپولوژیک قبلا مطرح شده است. هدف ما در این پایان نامه این است که این مسأله را در حالت خاص گروه خودریختی های رویه های ریمان بررسی می کنیم. در آنالیز مختلط رویه ی ریمان به یک خمینه ی مختلط یک بعدی همبند گفته می شود که در قضیه ی مشهور یکنواخت سازی رویه های ریمان همبند ساده ثابت می شود که از لحاظ همدیسی، تنها سه رویه ی ریمان هم...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392

هر رویه ریمان یک خمینه ‎1 ‎بعدی مختلط و یا یک ‎2 ‎خمینه حقیقی جهت پذیر است. قضیه یکنواخت سازی بیان می کند که هر رویه ریمان همبند ساده با صفحه مختلط، دیسک واحد باز پوانکاره(صفحه هذلولوی) یا کره ریمان هم ارز همدیس می باشد. بنابراین هر رویه ریمان ایزومتریک با فضای خارج قسمتی به صورت ‎xg‎ می باشد که در آن x فضای صفحه مختلط، دیسک واحد باز پوانکاره یا کره ریمان بوده و g ‎ نیز یک زیرگروه از گروه ایزوم...

2016

دیکچ ه باس فده و هق : ب یناوجون نارود رد هیذغت تیعضو یسررب ه زا ،نارود نیا رد یراتفر و یکیزیف تارییغت تعسو لیلد ب تیمها ه تسا رادروخرب ییازس . یذغتءوس نزو هفاضا ،یرغلا ،یقاچ زا معا ه هیذغت یدق هاتوک و یناوـجون نارود رد یا صخاش نییعت رد ب نارود رد یرامیب عون و ریم و گرم یاه م یلاسگرز ؤ تـسا رث . لماوـع تاـعلاطم زا یرایسـب لـثم ی هتسناد طبترم هیذغت عضو اب بسانم ییاذغ تاداع داجیا و یتفایرد یفاضا...

2018

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - پژوهشکده علوم 1392

یده ?? چ مانند ?? فضای خارج قسمت ?? صورت ی ?? توان به ???? دانیم که هر رویه ریمان را م ???? سازی م ?? نواخت ?? از قضیه ی زیر گروه گسسته ?? بوده و h یا فضای هذلولوی ? c ?? ، فضای اقلیدس s کره ? s~ که در آن ?? طوری ?? نوشتبه s~=?? دانیم که هر رویه ریمان فشرده ???? کند همچنین م ???? را القا م : s~ ??! s~=?? است که پوشش isom +(s~) از h که روی ? ?? است. برای هر گروه h?=?? صورت ?? به ?? تر از ? س...

Journal: :Erzincan Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2020

ژورنال: :علوم 0
نهان علی اف n aliev universityتبریز دانشگاه تربیت معلم محمدحسین فاتحی mh. fatehi universityدانشگاه تربیت معلم آذربایجان محمد جهانشاهی m jahanshahi azarbayjan tarbiat moallem universityدانشگاه تربیت معلم آذربایجان

مسایل مقدارمرزی مختلف برای معادلهٔ کوشی-ریمان با شرایط مرزی غیرموضعی در ناحیه های گوناگون در صفحه از طرف مؤلفین بحث و بررسی شده است. در این مقاله ابتدا با استفاده از جواب اساسی معادلهٔ الحاقی کوشی ریمان شرایط ضروری محاسبه می شوند. سپس با استفاده از شرایط ضروری و با استفاده از جواب های تحلیلی مسئله های قبلی، جواب تحلیلی معادلهٔ کوشی ریمان در ناحیه نصف ربع اول ارایه می شود.

2016

هدیکچ هقباس و فده : ناطرس زا بسانم تاعلاطا اب یم صاخ یئایفارغج هیحان رد فلتخم یاه همانرب ناوت ار یبط یاه یارب لابرغ و نامرد یرگ ) Screening ( هورگ دومن صخشم رطخرپ یاه . نآ زا هک اج گرم نازیم نانمس ناتسا تشادهب زکرم لااب ریم و ی زکرم رد یناقوف شراوگ هاگتسد ناطرس رثا رب ار ی ا هدرک شرازگ ناریا تس . یماـمت تـبث و یـسررب یارـب تفریذپ ماجنا یعماج قیقحت نانمس ناتسا یموب تیعمج نیب رد ناطرس دراوم ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1388

توابع گرین آراکلف مرزهای در بینهایت خمینه های هذلولوی سه بعدی برحسب هندسه درون خمینه محاسبه شده است یک خمینه هذلولی سه بعدی کامل ngرا با n مولفه مرزی در بینهایت در نظر گیرید که توسط گروه کلاینی g یکنواختسازی شده و همه مولفه های مرزی، رویه های ریمان فشرده باشند. می توان تابع گرین آراکلف هر مولفه مرزی را برای بخشیابها و نسبت به متریک آن تعریف نمود.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید