نتایج جستجو برای: قضیه ناافشردگی گروموف
تعداد نتایج: 3127 فیلتر نتایج به سال:
هدفاین پایان نامه مطالعه ی مجموعه پژوهشهای هندسی استکه منجر به اثباتقضیه ی ناافشردگی گروموف و سپسراه گشای پژوهشهای بعدی تا به امروز شده است. در فصل 1 پیشنیازها ارائه شده اند. این فصل با تعریفکروشه ی پواسن آغاز شده و به معرفی میدان های برداری همیلتونی می انجامد. سپس با کمک این مفاهیم، مواد مورد نیاز هندسه سیمپلکتیک را فراهم می آوریم که از جمله ی آن ها ساختارهای سیمپلکتیکو نگاشتهای سیمپلکتومورف...
در این پایان نامه به شرح مفاهیم اولیه از هندسه همتافته می پردازیم. ابتدا مفهوم فضاهای خطی همتافته وسپس منیفلدهای همتافته بررسی می شوند.در مرحله ی نهایی ازاین پایان نامه به ایده های اثبات قضیه نافشردگی گروموف اشاره می کنیم.
پلی فلدها, فضاهای توپولوژیک هاسدورف با پایه ی شمارش پذیری هستند که برخلاف خمینه های توپولوژیک دارای بعد متغیر میباشند. هدف اصلی ما در این پایان نامه, معرفی پلی فلدها و معرفی مفاهیمی مانند فضای مماس, کلاف تاری, قضیه ی تابع ضمنی و ... روی پلی فلدها است.همچنین درکنار آن نظریه ی عمومی فردهولم که با ساختمان ها مرتبط است, نیز مورد بررسی قرار خواهد گرفت. پلی فلدها و نظریه ی عمومی فردهولم کاربرد گسترده...
اساسی ترین مثال از زیر خمینه های با انحنای مقطعی از پایین کراندار ابررویه های با انحنای مقطعی مثبت در فضای اقلیدسی هستند. این ابررویه ها موضعا محدب هستند به این معنی که هر نقطه از آنها یک همسایگی دارد که به طور کامل در یک طرف صفحه مماس در آن نقطه واقع می شود. در این پایان نامه در ابتدا ساختار یک خم پرشده در فضای اقلیدسی 3- بعدی شرح داده می شود. سپس فضاهای الکساندروف تعریف می شوند و در چارچوب ای...
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
تمرکز مقاله بر بیان اثبات های متعدد قضیه مشهور پروانه در هندسه اقلیدسی است.
قضیه بورسوک-اولام و قضیه نقطه ثابت براوئر هر دو از قضیه های شناخته شده در توپولوژی هستند و هر دو غیر ساختاری و وجودی به شمار می آیند. بیشتر کتابهای درسی این قضیه ها را بدون ذکر رابطه آنها با یکدیگر بیان کرده اند. با وجود این ثابت می شود که قضیه بورسوک-اولام، قضیه نقطه ثابت براوئر را نتیجه می دهد. در این مقاله این نتیجه را با روشی مستقیم ثابت می کنیم.
اهمیت، تاثیر و راه گشایی قضیه گلدی در جبر به ویژه در نظریه حلقه ها فراوان بوده است و به طور قطع انجام پژوهش های بسیاری در جبر و دست یابی به نتایج مهم در این زمینه را باید مدیون قضیه گلدی دانست. در این مقاله می کوشیم زمینه های پیدایش قضیه گلدی و مفاهیمی را که در اثبات آن به کار رفته است، آشکار سازیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید