نتایج جستجو برای: لیوویل کسری
تعداد نتایج: 1984 فیلتر نتایج به سال:
مسایل اشتورم-لیوویل کسری که به مسایل مقدار ویژه موسوم هستند در خیلی از مسایل فیزیک، مهندسی و ریاضیات کاربردی ظاهر می شوند.بنابراین این مسایل که در کانون توجه ریاضیدانان و فیزیکدانان قرار گرفته است برای اولین بار حدود 170 سال قبل معرفی شدند. در این پایان نامه به معرفی مسایل اشتورم-لیوویل کسری شامل معادلات دیفرانسیل کسری از مرتبه دلخواه آلفا می پردازیم.مشتق و انتگرال ریمن-لیوویل و مشتقات کاپوتو ...
در این رساله معادله استورم-لیوویل از مرتبه کسری مورد مطالعه قرار می گیرد. معادله ای که با جایگزینی مشتق کسری از مرتبه عددی بین یک و دو به جای مشتق مرتبه دوم در معادله استورم-لیوویل معمولی به دست می آید. شکل کلی این معادله در این رساله به یکی از دو صورت زیر است d^? [p(x) y^(x) ]=?r(x)y(x)+f(x), 0<??1 یا d^? y(x)+q(x)=?r(x)y(x)+f(x), 1<??2 که در آن d^? مشتق کسری از مرتبه ? و از نوع کاپو...
در این پایان نامه روش تفاضلات متناهی چبیشف برای حل مسائل حساب تغییرات معمولی ارائه شده است. روش مستقیم شبه اویلر برای حل مسائل حساب تغییرات کسری معرفی شده است. عملگرهایی که تعمیم انتگرال کسری ریمان-لیوویل کلاسیک و مشتقات کسری ریمان-لیوویل و کپوتو هستند, مورد مطالعه قرار گرفته است.
مسایل اشتورم-لیوول که به مسایل مقدار ویژه نیز موسوم هستند در بسیاری از مسایل فیزیکی و مهندسی و ریاضیات کاربردی ظاهر می شوند و بسیاری از معادلات جزو دسته بندی معادلات اشتورم-لیوویل قرار می گیرند یا با تغییراتی قابل تبدیل به معادله اشتورم-لیوویل هستند. هدف از حل این مسایل در حالت مستقیم پیدا کردن مقادیر ویژه و توابع ویژه ی عملگر اشتورم-لیوویل می باشد. در این پایان نامه به حل مسائل اشتورم-لیوویل ک...
در این پایان نامه ابتدا مشتق و انتگرال کسری ریمان لیوویل را معرفی کرده ایم، پس از آن مشتق کسری کاپوتو بر اساس مشتق کسری ریمان-لیوویل و با خصوصیات بهتر از آن بیان شده و ویژگی های آن مورد بررسی قرار می گیرد. بحث با معرفی مسأله مقدار مرزی کسری و شرایط وجود و یکتایی جواب در حالات مختلف پیگیری شده و با تعریف تابع گرین کسری و مقایسه آن با تابع گرین معمولی ادامه می یابد. در پایان تفاوت بنیادی تابع گری...
در این پایان نامه، ابتدا یک مسئله منظم استورم?لیوویل کسری مورد بررسی قرار می گیرد. ویژه جواب های این مسئله توابع غیرچندجمله ای به نام چندجمله ایهای کسری ژاکوبی هستند. این ویژه تابع ها نسبت به تابع وزن معادله استورم?لیوویل متعامد می باشند. روش هم مکانی طیفی با دقت نمایی برای حل مسائل مستقل از زمان و وابسته به زمان شامل معادلات دیفرانسیل جزئی با مشتق مرتبه کسری به کار می رود.
در این پایان نامه ابتدا مفاهیم مشتق و انتگرال کسری به ترتیب از نوع ریمان-لیوویل و کاپوتو ارایه می گردد و خاصیت های مشتق ها و انتگرال های کسری بیان و اثبات می شوند. سپس در ادامه نظریه وجود جواب های مثبت دسته خاصی از معادلات دیفرانسیل کسری که شامل مشتقات چپ و راست ریمان-لیوویل می باشند را با استفاده از مباحث فضاهای متریک مخروطی و قضایای نقطه ثابت ارایه می کنیم. در نهایت وجود جواب های مثبت دستگاه...
عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...
این مقاله، روش محاسباتی کارآمدی را جهت حل مساله کنترل بهینه دسته ای از سیستم های غیرخطی مرتبه کسری بر پایه ترکیب روش سری مودال و استراتژی برنامه ریزی خطی ارایه می نماید. مشتق کسری بر اساس مفهوم ریمان- لیوویل و با مرتبه کسری بین صفر و یک در نظر گرفته شده است. معیار عملکردی که شامل هزینه نهایی می باشد انتگرال مربعی از حالت و کنترل با افق زمانی محدود در نظر گرفته شده است. در این مقاله هر دو مساله ...
بسیاری از مسائل در علوم و مهندسی به معادلات دیفرانسیل جزئی کسری منجر می شوند. ولی در عمل تعداد کمی از این معادلات را می توان به روش های تحلیلی حل کرد و جواب دقیق آن ها را به دست آورد. بنابراین از روش های عددی برای محاسبه جواب تقریبی آن ها استفاده می کنیم.در این پایان نامه از دو روش آنالیز هموتوپی(ham) و روش آشفتگی هموتوپی(hpm) برای حل معادلات دیفرانسیل جزئی کسری استفاده می کنیم. فصل اول به ار...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید