نتایج جستجو برای: مقادیر ویژه ی اکسترمال
تعداد نتایج: 183979 فیلتر نتایج به سال:
در این تحقیق کران های دقیقی برای کوچکترین و بزرگترین مقادیر ویژه ی رده ی خاصی از ماتریس های سه قطری متقارن ارائه می شود. ماتریس های به این شکل در بسیاری از مسائل کاربردی ظاهر می شوند. نتایج زیادی مانند قضیه گرشگورین، استروسکی و برآور وجود دارند که ناحیه ای را که مقادیر ویژه ی یک ماتریس مربعی در آن قرار دارند را تخمین می زنند. اما کران های بدست آمده از این نتایج برای رده ی خاصی از ماتریس های در ...
اساس کار در این پایاننامه به دست آوردن یک کران مطلوب برای مقادیر ویژهی اکسترمال رده ای خاص از ماتریسهای سهقطری متقارن تاپلیتز است. در فصل ? یک کران مطلوب برای کوچکترین و بزرگترین مقدار ویژه ماتریسهای سه قطری متقارن تاپلیتز که دو عنصر خارج از قطر اصلی آن دچار آشفتگی می شوند را با استفاده از یک رابطه ی بازگشتی که در متن پایان نامه آورده شده، به دست می آوریم. در ادامه یک مثال کاربردی مهم در حل مع...
مسئله ی مقدار ویژه معکوس در بسیاری از علوم مثل طراحی کنترل، ژئوفیزیک، نظریه مدار، طیف سنج مولکولی کاربرد دارد. یکی از مهمترین کاربردهای این مسئله، استفاده از آن در مبحث تخصیص مقدار ویژه در نظریه کنترل است. به دلیل اهمیت این مبحث در علوم مهندسی، در این پایان نامه ارتباط مسئله تخصیص مقدار ویژه با مسئله ی مقدار ویژه معکوس ماتریسی مورد بررسی قرار گرفته است و سپس با ارائه روشی جدید برای ح...
دیکچ ه باس فده و هق : ب یناوجون نارود رد هیذغت تیعضو یسررب ه زا ،نارود نیا رد یراتفر و یکیزیف تارییغت تعسو لیلد ب تیمها ه تسا رادروخرب ییازس . یذغتءوس نزو هفاضا ،یرغلا ،یقاچ زا معا ه هیذغت یدق هاتوک و یناوـجون نارود رد یا صخاش نییعت رد ب نارود رد یرامیب عون و ریم و گرم یاه م یلاسگرز ؤ تـسا رث . لماوـع تاـعلاطم زا یرایسـب لـثم ی هتسناد طبترم هیذغت عضو اب بسانم ییاذغ تاداع داجیا و یتفایرد یفاضا...
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
در این پایان نامه، ضمن معرفی زیرفضاهای پایا و زیرفضاهای ابرپایا و بردارهای اکسترمال اینفلو، از قضیه مدل منسوب به فویس و پیرسی استفاده نموده و زیرفضاهای ابرپایا برای عملگرهای شبه پوچ توان را معالعه می کنیم. نتیج? اصلی کار این است که اگر t تبدیل شبه آفین شبه پوچ توان و x_n، c-بردار ویژه از t^nt^*n باشد به طوریکه مجموعه { cl{x_n : n?n فشرده است، آنگاه tزیرفضای ابرپایای غیربدیهی دارد. در ادامه نیز ...
فصل اول به بررسی پیش نیازها می پردازد. فصل دوم مقادیر تکین و عناصر قطری را توضیح می دهد. فصل سوم مقادیر ویژه و سه نوع مقدار تکین ماتریس های مختلط را ارائه می دهد. فصل چهارم به بررسی ماتریس ها با شرایط اکسترمال می پردازد و در پیوست واژه نامه آورده شده است
در این پایان نامه، چندین تکنیک موقعیت یابی برای مقادیر ویژه ی تعمیم یافته ی یک دوتایی ماتریسی (دسته ی ماتریسی) از طریق قضیه مشهور گرشگورین و تعمیم های آن مورد مطالعه و بررسی قرار گرفته اند. بعلاوه، تعدادی مثال عددی برای نواحی موقعیت یابی ساخت یافته بیان شده است. همچنین، بهبودها در تقریب ها شرح داده شده اند.
َاین پایان نامه، به بررسی تعدادی از روشهای موجود برای حل مسائل مقادیر ویژه با اندازه بزرگ میپردازد و در چهار فصل تدوین شده است. در فصل اول به مفاهیم و قضایای اولیه و پایه ای که در فصول بعد مورد نیاز هستند، پرداخته میشود. در فصل دوم تعدادی از روشهای کلاسیک موجود برای به دست آوردن مقادیر ویژه مطرح خواهد شد. در فصل سوم ابتدا روشهای تکراری مبتنی بر زیرفضای کرایلوف را بررسی میکنیم. روش آر...
کارایی محاسبه بردار های ویژه و مقادیر ویژه مسئله مهم در مهندسی است.در این پایان نامه رویکردی براساس شبکه عصبی برای محاسبه بردار های ویژه متناظر به بزرگترین وکوچکترین مقادیر ویژه هر ماتریس متقارن حقیقی پیشنهاد میشود.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید