نتایج جستجو برای: نگاشت توسیع نیافتنی چند مقداری
تعداد نتایج: 81917 فیلتر نتایج به سال:
فرض کنید x فضای باناخ و t نگاشتی روی x باشد. برای نگاشت t، بعضی شرایط خاص را معرفی می کنیم. ابتدا به معرفی شرط (c)می پردازیم که از نگاشتهای توسیع نیافتنی ضعیف تر و از شبه توسیع نیافتنی قوی تر است.نگاشت t همراه با شرط (c) را یک نگاشت از نوع (c) می نامیم. سپس روی نگاشت t، شرط (l) را معرفی می کنیم و رابطه نگاشت نوع (l) را با بعضی دیگر از نگاشت های توسیع نیافتنی بیان می کنیم. آنگاه وجود نقطه ثابت ر...
این پایان نامه شامل سه فصل است : در بخش اول از فصل اول نگاشتهای چندمقداری ، نگاشتهای چند مقداری محدب و مطالبی که در سایر بخشها به آنها نیاز است معرفی می شود. در بخش دوم قضایای نگاشت بازوگراف بسته برای نگاشتهای چندمقداری محدب را می آرویم. فصل دوم اساسی ترین فصل پایان نامه است که در بخش اول آن نگاشتهای چند مقداری نیم محدب و توابع نیم محدب معرفی خواهند شد و سپس مسائلی را در مورد نگاشتهای چندمقداری...
قضیه نقطه ثابت برای نگاشت های چند مقداری بوسیله نادلر مطرح شد وتوسط دیگران در جهات مختلف مطرح واثبات شد .در این پایان نامه روند توسیع قضیه نقطه ثابت برای نگاشت های چند مقداری انقباضی در صور مختلف مطرح ومورد بررسی قرار می گیرد.
قضیه نقطه ثابت باناخ در جهات مختلف و توسط افراد زیادی توسیع داده شده است و اولین بار قضیه نقطه ثابت برای نگاشت های چند مقداری انقباضی توسط نادلر در سال 1969 مطرح و سپس این موضوع توسط دانشمندان دیگر مورد بررسی قرار گرفت و در سال 1989 توسط میزگوچی و تاکاهاشی توسعه پیدا کرد و قضیه ی نقطه ثابت میزگوچی-تاکاهاشی را ارائه دادند. اکنون، ما در این پایان نامه قضیه نقاط ثابت میزگوچی-تاکاهاشی را بر...
در این رساله، در ابتدا، یک الگوی تکرار شونده را برای نگاشت های چند مقداری شبه انقباضی معرفی می کنیم و همگرایی این الگوی تکرار شونده را به یک نقطه ثابت نگاشت در فضاهای باناخ ثابت می کنیم. سپس، نگاشت چند مقداری غیر انبساطی نسبی را تعریف می کنیم. به علاوه، یک الگوی تکرار شونده را برای نگاشت های چند مقداری غیر انبساطی نسبی معرفی می کنیم و همگرایی این الگوی تکرار شونده را به یک نقطه ثابت نگاشت در ف...
در این رساله، ابتدا به تعریف نگاشت مجموعه مقدار و خاصیت های مربوط به آن می پردازیم و در فصل دوم قضایای نقطه ثابتی را برای نگاشت های تک مقداری، در فضاهای متریک کامل مطرح کرده و سپس توسیع هایی از این قضایا را برای نگاشت های مجموعه مقدار ارائه می دهیم. در پایان، فصل سوم، این توسیع ها را با استفاده از روش تغییر فاصله گسترش می دهیم.
در این پایان نامه پس از معرفی فضاهای متریک مجهز به گراف به بررسی شرایطی می پردازیم که تحت آن -انقباض ها و -انقباض های مجانبی دارای نقطه ثابت باشند. همچنین با توسیع قضیه ی نقطه ی ثابت نادلر برای نگاشت های چند مقداری، شرایطی را بررسی می کنیم که تحت آن ، نگاشت f : x ? cb(x) دارای نقطه ی ثابت باشد. در این جا (x,d) یک فضای متریک مجهز به گراف جهت دار و cb(x) کلاس تمام زیرمجموعه های بسته و ناتهی x می ...
در این تحقیق به بیان نتایجی درباره ی ویژگی های اندازه پذیری روابط (نگاشت های چند- مقداری) و قضایای تابع ضمنی و انتخاب می پردازیم و از نظریه انتخاب های اندازه پذیر برای نگاشت های چند- مقداری استفاده می کنیم تا جواب های تصادفی (نه لزوما یکتا ) برای معادلات تصادفی با عملگرهای یکنوا در فضاهای باناخ را به دست آوریم. در فصل 1 مفاهیم مقدماتی که در ادامه به آن احتیاج خواهیم داشت بیان می کنیم. مفاهیمی د...
تعدادی از توسیع های اصل انقباض banachدر مطبوعات وجود دارد.یکی از مهم ترین این توسیع های داده شده مانند قضیه نقطه ثابت caristi معادل با اصل تغییراتی ekelandاست و امروزه یکی از ابزار مهم در آنالیز غیرخطی است. تعداد زیادی از نویسندگان قضیه نقطه ثابتcaristi را در جهت های گوناگون مطالعه کرده اند و تعمیم داده اند. برای مثال kadaو suzukiبه ترتیب مفهوم های w-فاصله و ?- فاصله را روی فضاهای متریک معرفی ک...
در این پایان نامه با فرض اینکه(x, d) یک فضای متریک کامل و مرتب باشد، به معرفی نگاشتهای چند مقداری و ویژگی های آن ها پرداخته ایم. سپس با بیان و اثبات یک قضیه اساسی به بررسی قضایای نقطه ثابت برای نگاشتهای چند مقداری می پردازیم. در ادامه قضیه نقطه ثابت ترکیبی برای نگاشتهای چند مقداری روی فضاهای متریک مرتب را بیان و اثبات می کنیم و با استفاده از این قضایا یک معادله دیفرانسیل هذلولی را بررسی می کنیم...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید