نتایج جستجو برای: 0)-injective modules
تعداد نتایج: 628849 فیلتر نتایج به سال:
we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
The concepts of free modules, projective modules, injective modules, and the like form an important area in module theory. The notion of free fuzzy modules was introduced by Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameri introduced the concept of projective and injective L-modules. In this paper, we give an alternate definition for injective L-modules and prove t...
Let R be a ring and let M be a right R-module with S End MR . M is called almost general quasiprincipally injective or AGQP-injective for short if, for any 0/ s ∈ S, there exist a positive integer n and a left ideal Xsn of S such that s / 0 and lS Ker s Ss ⊕ Xsn . Some characterizations and properties of AGQP-injective modules are given, and some properties of AGQP-injective modules with additi...
the concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. the notion of free fuzzy modules was introducedby muganda as an extension of free modules in the fuzzy context. zahedi and ameriintroduced the concept of projective and injective l-modules. in this paper we give analternate definition for projective l-modules. we prove that e...
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...
an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
محور اصلی این پایان نامه، r- مدولهای a – انژکتیو می باشد که آنها را به عنوان یک تعمیم از مدول های انژکتیو معرفی می کنیم. در ابتدا مدول های انژکتیو را معرفی کرده، سپس برخی نتایج مهم وشناخته شده مدول های انژکتیو را به مدول های a – انژکتیو تعمیم می دهیم. در ادامه رابطه بین مدول های a – انژکتیو و حلقه های نوتری را بررسی می کنیم. پس هدف کلی این پایان نامه این است که با بررسی انژکتیو بودن ایده آله...
Let $R$ be a ring, $n$ an non-negative integer and $d$ positive or $\infty$. A right $R$-module $M$ is called \emph{$(n,d)^*$-projective} if ${\rm Ext}^1_R(M, C)=0$ for every $n$-copresented $C$ of injective dimension $\leq d$; ring \emph{right $(n,d)$-cocoherent} with $id(C)\leq d$ $(n+1)$-copresented; $(n,d)$-cosemihereditary} whenever $0\rightarrow C\rightarrow E\rightarrow A\rightarrow 0$ e...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید