نتایج جستجو برای: Convolutional Neural Networks

تعداد نتایج: 641320  

A. Gheitasi H. Farsi, S. Mohamadzadeh

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

2015
Xiaofeng Han Yan Li

Convolutional neural networks are a technology that combines artificial neural networks and recent deep learning methods. They have been applied to many image recognition tasks and have attracted the attention of the researchers of many countries in recent years. This paper summarizes the latest development of convolutional neural networks and expounds the relative research of image recognition...

Journal: :Pattern Recognition 2018
Jiuxiang Gu Zhenhua Wang Jason Kuen Lianyang Ma Amir Shahroudy Bing Shuai Ting Liu Xingxing Wang Gang Wang Jianfei Cai Tsuhan Chen

In the last few years, deep learning has lead to very good performance on a variety of problems, such as object recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Due to the lack of training data and computing power in early days, it is hard to train a large high-capaci...

2016
Ngoc Thang Vu Heike Adel Pankaj Gupta Hinrich Schütze

This paper investigates two different neural architectures for the task of relation classification: convolutional neural networks and recurrent neural networks. For both models, we demonstrate the effect of different architectural choices. We present a new context representation for convolutional neural networks for relation classification (extended middle context). Furthermore, we propose conn...

2016
Markus Nußbaum-Thom Jia Cui Bhuvana Ramabhadran Vaibhava Goel

Convolutional and bidirectional recurrent neural networks have achieved considerable performance gains as acoustic models in automatic speech recognition in recent years. Latest architectures unify long short-term memory, gated recurrent unit and convolutional neural networks by stacking these different neural network types on each other, and providing short and long-term features to different ...

2014
Bastian Leibe David Stutz

This seminar paper focusses on convolutional neural networks and a visualization technique allowing further insights into their internal operation. After giving a brief introduction to neural networks and the multilayer perceptron, we review both supervised and unsupervised training of neural networks in detail. In addition, we discuss several approaches to regularization. The second section in...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید