نتایج جستجو برای: measurable sets modulo sets of measure zero
تعداد نتایج: 21194000 فیلتر نتایج به سال:
For any C ⊆ R there is a subset A ⊆ C such that A + A has inner measure zero and outer measure the same as C + C. Also, there is a subset A of the Cantor middle third set such that A+A is Bernstein in [0, 2]. On the other hand there is a perfect set C such that C + C is an interval I and there is no subset A ⊆ C with A + A Bernstein in I.
In this note we will show that for every natural number n > 0 there exists an S ⊂ [0, 1] such that its n-th algebraic sum nS = S + · · ·+ S is a nowhere dense measure zero set, but its n+1-st algebraic sum nS+S is neither measurable nor it has the Baire property. In addition, the set S will be also a Hamel base, that is, a linear base of R over Q. We use the standard notation as in [2]. Thus sy...
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
1. Introduction. Let 5 be a measure space with a countably additive , (T-finite, complete (non-negative) measure. J. von Neumann has proved that, from each class x of measurable sets modulo null sets of 5, a representative set R(x)Ex can be picked in such a way
در این پایان نامه مجموعه -wحدی برای مجموعه های ژولیا دندریت نگاشت های درجه دوم توصیف می شود. با استفاده از نمایش نمادین بالدوین این فضاها، به عنوان فضای راه نامه غیرهاسدورف، نشان داده می شود که نگاشت های درجه دوم با مجموعه ژولیا دندریت دارای خاصیت تعقیب هستند و همچنین ثابت می شود که برای همه چنین نگاشت هایی، یک مجموعه بسته ی ناوردا، مجموعه -wحدی یک نقطه است اگر و تنها اگر به طور درون...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید