Dynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach

نویسندگان

  • J Rezaeepazhand Smart and Composite Structures Lab, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • M Shariati Nanomechanics Lab, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • S. M. Hosseini Farrash Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده

The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNTs) and AFCNT/epoxy (0.25 and 0.5 wt. % of AFCNTs) were fabricated. Experimental vibrational test is utilized in order to study the free vibration behavior of specimens under clamped-free boundary conditions. Natural frequencies and damping ratios are extracted from the experimental time response graphs. Results indicated that adding AFCNTs (0.5 wt. %) into the matrix material has the most effect on the natural frequency of the beam. In this case, the damping ratio has the lowest value. Moreover, scanning electron microscopy (SEM) images of the fracture surface of the specimens are prepared. The images illustrate that amine functionalization of CNTs leads to better dispersion of CNTs into the epoxy matrix. Further, it can be observed that enhancement in the value of damping ratio is more dominant than enhancement in stiffness value by dispersing AFCNTs into the epoxy resin.

برای دانلود باید عضویت طلایی داشته باشید

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content s...

متن کامل

Dynamic Characteristics of Joined Steel and Carbon Fiber-Reinforced Plastic Tubes: Experimental and Numerical Investigation

The fundamental frequencies and mode shapes of steel and carbon fiber–reinforced plastic (CFRP) cylindrical shells with steel inserts were investigated using finite element analysis and modal testing. The free-free boundary condition was tested with modal testing using the roving hammer method and verified by finite element analysis using ABAQUS. The results show good agreement between the test...

متن کامل

The Effects of Functionalized Multi-walled Carbon Nanotube on Mechanical Properties of Multi-walled Carbon Nanotube/Epoxy Composites

The mechanical properties of the multi-walled carbon nanotube (MWCNT)/epoxy composites affected by carboxyl and amino functionalized MWCNT are investigated. Tensile tests of the specimens were carried out to obtain mechanical properties of MWCNT/epoxy composites for various weight-percents (wt %) of MWCNTs. In order to properly predict the mechanical properties of MWCNT reinforced epoxy composi...

متن کامل

Static and modal analysis of parabolic-boundary functionalized Carbon nanotube-reinforced composite plates using FEM

This paper investigates the effect of different methods of carbon nanotubes distribution in a thin matrix on static and dynamic behavior of the nanocomposite. Five different symmetric patterns of distribution are considered, including four parabolic patterns and a linear one. For each pattern, the effective mechanical properties of the resultant nanocomposite are calculated using the rule of mi...

متن کامل

Static and modal analysis of parabolic-boundary functionalized Carbon nanotube-reinforced composite plates using FEM

This paper investigates the effect of different methods of carbon nanotubes distribution in a thin matrix on static and dynamic behavior of the nanocomposite. Five different symmetric patterns of distribution are considered, including four parabolic patterns and a linear one. For each pattern, the effective mechanical properties of the resultant nanocomposite are calculated using the rule of mi...

متن کامل

Predicting Young’s Modulus of Aggregated Carbon Nanotube Reinforced Polymer

Prediction of mechanical properties of carbon nanotube-based composite is one of the important issues which should be addressed reasonably. A proper modeling approach is a multi-scale technique starting from nano scale and lasting to macro scale passing in-between scales of micro and meso. The main goal of this research is to develop a multi-scale modeling approach to extract mechanical propert...

متن کامل

ذخیره در منابع من

ذخیره در منابع من ذخیره شده در منابع من

{@ msg_add @}

  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی راحت تر خواهید کرد

دانلود متن کامل

برای دسترسی به متن کامل این مقاله و 10 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید


عنوان ژورنال:

دوره 12  شماره 2

صفحات  358- 365

تاریخ انتشار 2020-06-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2021