نتایج جستجو برای: مقسوم علیههای صفر
تعداد نتایج: 17719 فیلتر نتایج به سال:
گراف مقسوم علیه صفر یک حلقه s که لزوما تعویض پذیر نیست و با vec {?}(s) نمایش داده می شود، یک گراف ساده جهت دار است که در آن مجموعه مقسوم علیه های صفر ناصفر به عنوان رئوس در نظر گرفته می شوند و راس a به b توسط یک جهت به صورت a ? b متصل است اگر و تنها اگر ab=0. فرض می کنیم r یک حلقه تعویض پذیر یکدار و t_{n}(r) حلقه ی ماتریس های بالا مثلثی n×n روی r باشد. در این پایان نامه گر...
هدف این رساله مطالعه خواص برخی از گراف های نسبت داده شده به یک حلقه جابه جایی می باشد. یکی از گراف های مورد نظر، گراف منظم ایده آل های یک حلقه جابه جایی می باشد. این گراف در حالتی که حلقه زمینه، آرتینی است قبلا مورد بررسی قرار گرفته است. در این رساله ما رفتار این گراف را بر روی یک حلقه نوتری بررسی می کنیم. در بخشی از این رساله همه حلقه هایی را رده بندی می کنیم که گراف نظیر آن ها همبند باشد و قط...
فرض کنیم r یک حلقه شرکت پذیر یکدار و alpha:r ightarrow r یک همریختی است. حلقه r را کاهشی گویند، هرگاه فاقد عنصر پوچ توان ناصفر باشد. اگر r کاهشی باشد {f(x)=∑m_{i=0}^{n}{a_ix^i و {g(x)=∑m_{j=0}^{m}{b_jx^j عناصری از حلقه چندجمله ای های [r[x باشند، چنانچه f(x)g(x)=0، آن گاه برای هر i,j داریم a_ib_j=0. تعمیم های متعددی از مفهوم حلقه های کاهشی تاکنون ارائه شده که از اهم آن ها، حلقه های آرمنداریز،...
فرض میکنیم r حلقه ای تعویض پذیر یکدار و (z(r یک مجموعه از مقسوم علیه های صفر r باشد . گراف مقسوم علیه های صفر (?(r گرافی است که راس های آن عضو{z*(r) =z(r) {0 می باشند؛ دو راس متمایز x,y متعلق به مجاور هستند اگر وتنها xy=0 . حال چون صفر یک ایدآل از r می باشد، با تعویض ایدآل صفر در r با یک ایدآل دلخواه مانند i ازr ، گراف (? i(rایجاد می شود که راس های آن همه عناصر مجموعه ی {x?ri|xy?i;y?ri} هستند...
ساختارهای جبری در سال های اخیر توسط گراف ها مطالعه شده اند که این مطالعات موجب سوالات و نتایج بسیاری شده اند. شاید در این بین، یکی از معروفترین گراف هایی که مورد مطالعه قرار گرفته است، گراف مقسوم علیه صفر یک حلقه است. در این پایان نامه، گراف کلی یک حلقه ی جابه جایی r که با t(?(r)) نشان داده می شود مورد بحث قرار می گیرد. راس های گراف کلی r، همه عناصر r بوده و دو راس متمایز x و y مجاورند اگر و فق...
فرض کنید r یک حلقه جابه جایی با همانی ناصفر باشد. دوگان گراف مقسوم علیه صفر r، که با نماد(??(r نشان داده می شود، گرافی است ساده با مجموعه راس های (w*(r که (w*(r مجموعه عناصر ناصفر و نایکال r می باشد و دو راس متمایز x و y مجاورند اگر و تنها اگر x عضو ry نباشد و y عضو rx نباشد. در این پایان نامه، ارتباط بین r و (??(r را بررسی می کنیم. همچنین ارتباط بین (??(r با گراف مقسوم علیه صفر و گراف هم م...
در این پایان نامه ما، گراف کلاس های هم ارزی مقسوم علیه های صفر یک حلقه جابجایی r را مطالعه می کنیم. در ادامه چگونگی دریافت اطلاعاتی درباره حلقه r از این ساختار را نشان می دهیم. به ویژه چگونگی شناسایی اول وابسته های حلقه r را به کمک گراف کلاس های هم ارزی مقسوم علیه های صفر آن تعیین می کنیم. ایده اصلی این پایان نامه از مقاله s. spiroff, c. wickham, a zero divisor graph determind by equivalence...
فرض کنید r یک حلقه تعویض پذیر باشد، گراف مقسوم علیه صفرr، با نماد(r)?، گراف غیر جهت داری است که رأس های آن عناصر غیر صفر مقسوم علیه های صفر r هستند، چنانچه دو رأس x و y به وسیله یک لبه به هم متصل اند اگر و تنها اگر xy=0. حال چون صفر یک اید آل از حلقه r است، میتوان آن را در تعریف فوق با اید آل دلخواه i جابجا کرد و تعریف زیر را مطرح نمود. فرض کنید r یک حلقه تعویض پذیر و i اید آلی از r باشد. گرا...
در این پایان نامه ارتباط بین خواص جبری و خواص گرافی, گراف ایده آل پوچ کن حلقه های تعویض پذیر بیان می شود. فرض کنیم r یک حلقه تعویض پذیر و یکدار باشد. در این صورت ایدآل i از r را ایده آل پوچساز می گوییم هرگاه ایده آل ناصفرj از r وجود داشته باشد به طوری که ij=(0). مجموعه ی همه ی ایده آل های پوچ ساز حلقه ی r را با a(r) نشان می دهیم. گراف ایده آل پوچ کن گرافی است با مجموعه رئوس a( r ) ...
فرض کنید r یک حلقه جابجایی و (a(r مجموعه ایدآل هایی از rباشد که پوچساز آن ها ناصفر است. گراف ایدآل های پوچساز یکدیگر r بصورت ( a(r نشان داده که مجموعه رأس های آن {(a(r)*=a(r)-{(0)} بوده و دو رأس متمایزi و jمجاورند اگر ij=(0). در این پایان نامه حلقه های جابجایی را بررسی می کنیم که گراف ایدآل های پوچساز آن ها دارای گونای متناهی و مثبت باشد. در حالتی که r حلقه ای آرتینی بوده وag(r)) ℵ) <∞، نشان دا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید