نتایج جستجو برای: شبه محدب
تعداد نتایج: 11954 فیلتر نتایج به سال:
درسالهای اخیر چندین توسیع وتعمیم برای کلاس توابع محدب در نظر گرفته شدکه یک تعمیم قابل ملاحظه آن توابع شبه محدب بود. تابع را یک تابع شبه محدب می نامیم هرگاه یک مجموعه شبه محدب، غیرتهی باشد.به شرط آنکه یک تابع برداری مقدار موجود باشد به طوریکه رابطه ذیل برقرار باشد شبه تحدب دربهینه سازی غیرخطی وشاخه های ناب علوم کاربردی، بسیار موثراست که اولین بارتوسط شخصی به نام هانسون [14] در سال 1981 ارائ...
آنالیز محدب یکی از ابزارهایی است که کاربرد فراوانی در ریاضیات دارد. مجموعه ها و توابع محدب نقش مهمی در آنالیز محدب بازی می کنند . به عنوان مثال در توابع محدب هر مینیمم موضعی یک مینیمم سراسری است . در این پایان نامه برخی روابط بین نابرابری های تغییراتی برداری و مسائل بهینه سازی برداری مشتق ناپذیر با فرض توابع محدب پایای غیر هموار اثبات شده است. هم چنین مجموعه ی جواب های ناتهی و فشرده برای نابراب...
باتوجه به نقش مهمی که توابع محدب و شبه محدب در شاخه های مختلف ریاضیات ایفا می کنند وبه ویژه در مباحث بهینه سازی از اهمیت خاصی برخوردارهستند، به عنوان مثال یک تابع محدب (اکید) روی یک مجموعه باز، بیش از یک مینیمم ندارد و ... یکی از نامساوی هایی که توجه بسیاری از ریاضیدانان را در چنددهه اخیر به خود جلب کرده است نامساوی معروف هرمیت- هادامارد است که تعمیم های مختلفی داشته خصوصا بر روی دیسک، گوی و ج...
هدف اصلی این پایان نامه بررسی انواعی از توابع محدب نظیر توابع محدب تقریبی، محدب میانی، محدب میانی تقریبی، شبه محدب، شبه محدب میانی، m-محدب و (alpha,m)-محدب است. در این راستا با ارائه ی تعاریف و قضایا سعی می نماییم علاوه بر بیان مفاهیم، به ذکر خواص اصلی این گونه توابع مانند پیوستگی و کران داری آن ها بپردازیم و نامساوی های تحدب گونه ای را که هر کدام از این توابع به وسیله ی آن ها تعریف می شوند، مع...
تحدب و تحدب تعمیم یافته نقش مهمی در برنامه ریزی خطی و غیرخطی، بهینه سازی، نظریه ی کنترل و حل نامساوی های تغییراتی ایفا می کنند. در این پایان نامه نوعی تحدب تعمیم یافته جهت حل مسائل برنامه ریزی غیرخطی مورد استفاده قرار گرفته است و به بیان قضیه ای از کروزیک و فرلند در راستای تحدب تعمیم یافته می پردازیم و نتایجی از آن به دست می آوریم. با استفاده از مشتق جهت دار تعمیم یافته ی کلارک، تعاریف نیمه م...
فضاهای برداری توپولوژیکی موضعاً محدب بر یک شبه میدان توپولوژیکی نرم پذیرند . با استفاده از این نرم عملگرهای باناخ وتوابع انبساط ناپذیر تعریف می شوند و چند قضیه نقطه ثابت اثبات می گردند . همچنین برای فضاهای اکیداً محدب نشان داده می شود که تحت شرطهای مناسب مجموعه ی نقاط ثابت یک تابع انبساط ناپذیر یک تو کشیده ی انبساط ناپذیر است.
در این پایان نامه، بر روی اصل تغییراتی اکلند و برخی کاربردهای آن مانند قضیه نقطه ثابت، نقاط کارا و غیره تمرکز می کنیم. ابتدا، اصل تغییراتی اکلند برای توابع دوتایی برداری ـ مقدار در فضاهای موضعاً محدب به دست می آید. سپس قضیه نقطه ثابت کِرک ـ کاریستی، قضیه اوتِلی و تِرا، و قضیه تعادلی از آن نتیجه می شود. به علاوه معادل بودن این قضایا نتیجه می شود. در ادامه با استفاده از مفهوم شبه فاصله تعمیم یافته، ب...
در این پایان نامه روش نقطه تقریبی را برای کلاس خاصی از توابع غیر محدب، روی خمینه های هادامار بررسی می کنیم. دنباله ی تولید شده توسط این روش، خوش تعریف است. به علاوه ثابت می کنیم که هر نقطه ی انباشتگی از این دنباله، در شرایط بهینگی صدق می کند و تحت شروطی روی این دنباله، همگرایی آن برای یک می نیمم کننده بدست می آید. هم چنین روش نقطه تقریبی را با استفاده از فاصله ی برگمن برای حل مسائل بهینه سازی م...
دراین پایان نامه برای تابع مشتق ناپذیر f مشتق سویی تعمیم یافته کلارک از f در x در امتداد v و همینطور زیر دیفرانسیل تعمیم یافته کلارک از f در x در امتداد v را تعریف کرده ایم. و با استفاده از این تعاریف و تعاریفی که برای توابع محدب - نیمه محدب - شبه محدب - نیمه اکیدشبه محدب و همچنین یکنوایی - نیمه یکنوایی و شبه یکنوایی داریم روابط بین آنها را بیان می کنیم. همچنین حالتی را که f تابع مشتق پذیر با...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید