نتایج جستجو برای: مدول بئر
تعداد نتایج: 4622 فیلتر نتایج به سال:
در این پایان نامه، رده های جدیدی از مدول ها به نام مدول های قویاً توسیعی، قویاً ترفیعی، t-ریکارت، t-هم ریکارت بئر محض و ریکارت محض را معرفی کرده و خواص آنها را مورد مطالعه قرار می دهیم. همچنین حلقههایی را مشخص می کنیم که تمام مدول ها بر روی این حلقه ها خاصیت مورد نظر را دارند ([39]، ،[40] ،[41]،[42]،[43]،[44] و [45] ).به علاوه، مفاهیم هم ایده آل های اولین و توپولوژی زاریسکی را برای هم ایده آل های...
دراین پایانامه قضیه ای از ((کیست)) را که برای حلقه های جابجایی pp بیان شده است را به حلقه های شبه بئر اصلی توسعه می دهیم، که در آن هر ایده آل اول مینیمال منحصربفرد است. این مطب را بدون استفاده از بحث های توپولوژیکی بیان خواهیم کرد. همچنین تجزیه هایی از حلقه های شبه بئر و شبه بئر اصلی را مورد بررسی قرار می دهیم. بعلاوه ویژگی های هم ارزی از مدول های شبه بئر اصلی را ارائه خواهیم داد.
چکیده ندارد.
خواصی از مدولهای نمایش یک حلقه شرکتپذیر و یکدار بوده و همه مدولها یکانی درنظر گرفته می r در این رساله را با نمایش متناهی ? مینامیم هرگاه یک دنبالهی دقیق کوتاه به شکل: m -مدول چپ r شوند. ? ??! k ??! f ??! m ??! ? -مدول چپ r یک k -مدول چپ آزاد با رتبهی متناهی و r یک f وجود داشته باشد به طوری که -چسبنده ? گویند هر گاه هر زیرمدول اصلی از آن با نمایش p را m -مدول r متناهی مولد باشد. را بئر ? گ...
فرض کنیم r حلقه ای یکدار و شرکت پذیر، m یک r –مدول راست یکانی و (s=end(m حلقه ی r- درون ریختی ها روی m باشد. حلقه ی r را بائر (بئر ) گوییم هرگاه پوچ ساز راست هر زیر مجموعه ی r، جمعوند مستقیمی ازr باشد. در این پایان نامه مفهوم بائر( بئر) و خواص مربوط به آن را برای یک مدول دلخواه بیان می کنیم. مدول mبائر است اگر به ازای هر ایدال چپ i از حلقه ی s، r_m (i)?^?m . نشان می دهیم خاصیت بائر توسط جمع...
در این پایان نامه مدول های ریکارت و اندوریکارت و ارتباط آن ها با مدول های توسیعی، نامنفرد و k -نامنفرد را مورد مطالعه قرار می دهیم. به بررسی ارتباط بین مدول های ریکارت و حلقه ی درون ریختی آن می پردازیم. مفهوم حلقه و مدول بئر را ارائه می دهیم و با ذکر قضایا و مثال هایی خواص این رده ی مهم از مدول ها را بررسی می کنیم. قضایایی درباره ی مدول های ریکارت به منظور تعیین ساختار این مدول ها ارائه خواهد شد.
یک مدول را fi-توسیعی می نامیم اگر برای هر زیرمدول تماما پایای آن مانند n یک زیرمدول جمعوند مانند p موجود باشد به طوری که n در p اساسی باشد. به عنوان مثال هر میدانی fi-توسیعی است. در این پایان نامه به مطالعه ی خواص این مدول ها پرداخته می شود. به خصوص یک تجزیه ویک ماتریس نمایش برای حلقه ی r که به عنوان r-مدول راست و چپ fi-توسیعی است بیان می شود. همچنین روابط بین این مدول ها و مدول های بئر بررسی م...
این پایان نامه در سه فصل تنظیم شده است. در این پایان نامه به بررسی بعد کرول توپولوژیکی مدول های توپولوژی می پردازیم. بعد کرول مجموعه همه ی زیرمدول های بسته از یک مدول، بعد کرول توپولوژیکی نامیده می شود. در حالت کلی، ممکن است که یک مدول دارای بعد کرول توپولوژیکی باشد، اما بعد کرول نداشته باشد. می دانیم که هر مدول با بعد کرول، بعد گلدی متناهی دارد، اما اگر یک مدول بعد کرول توپولوژیکی داشته باشد، ...
در این پایان نامه به مطالعه مدول های ریکارت می پردازیم. مدول m را ریکارت گوییم اگر پوچساز راست هر درونریختی روی m در m جمعوند m باشد.این مفهوم در واقع تعمیمی از مدول های بئر و حلقه های ریکارت است. در فصل دوم این دایان نامه حلقه های ریکارت را معرفی کرده و ویژگی های مهم ان را بیان می کنیم. همچنین ارتباط حلقه ریکارت با رده هایی از حلقه ها نیز بررسی می شود. در فصل سوم مدول ریکارت را معرفی می کنی...
در این رساله تعمیم های با ارزشی از چندین مفهوم مهم در نظریه ی حلقه ها به مدول ها ارایه می شود به طوری که به نتایج مشابه نظریه ی حلقه ها دست یابیم برای این منظور زیر مدول p از r –مدول چپ m را یک زیر مدول اول کلاسیک می نامیم اگر به ازای هر دو ایدال b,a از r و هر زیر مدول n از m , abn نتیجه بدهد an c p یا bn c زیر مدول نیم اول به طور مشابه تعریف می گردد. سپس مفهوم m- سیستم در حلقه ها را به مدول ها...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید