نتایج جستجو برای: interval prediction neural networks
تعداد نتایج: 1045591 فیلتر نتایج به سال:
gas hydrate formation in production and transmission pipelines and consequent plugging of these lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. gas hydrate formation rate is one of the most important topics related to the kinetics of the process of gas hydrate crystallization. the main purpose of this study is investigating phenomenon of gas hyd...
the use of neural networks methodology is not as common in the investigation and pre-diction noise as statistical analysis. the application of artificial neural networks for pre-diction of power tiller noise is set out in the present paper. the sound pressure signals for noise analysis were obtained in a field experiment using a 13-hp power tiller. during measurement and recording of the sound ...
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
In the recent years, reciprocal link prediction has received some attention from the data mining and social network analysis researchers, who solved this problem as a binary classification task. However, it is also important to predict the interval time for the creation of reciprocal link. This is a challenging problem for two reasons: First, the lack of effective features, because well-known l...
This paper proposes Runge-Kutta neural networks (RKNNs) for identification of unknown dynamical systems described by ordinary differential equations (i.e., ordinary differential equation or ODE systems) with high accuracy. These networks are constructed according to the Runge-Kutta approximation method. The main attraction of the RKNNs is that they precisely estimate the changing rates of syste...
in recent years, researches on reinforcement learning (rl) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. neural network reinforcement learning (nnrl) is among the most popular algorithms in the rl framework. the advantage of using neural networks enables the rl to search for optimal policies more efficiently in several real-life applicat...
”Echo State” neural networks, which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater predictive ability. In this paper we study the influence of the memory length on predictive abilities of Echo State neural networks. The conclusion is that Echo State neural networks with fixed memory length can have ...
Echo State neural networks (ESN), which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater predictive ability. In this paper we study the influence of the memory length on predictive abilities of Echo State neural networks. The conclusion is that Echo State neural networks with fixed memory length can h...
Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...
Accurate prediction of demand is the key to reduce the cost of inventory for an enterprise in Supply Chain. Based on recurrent neural networks, a new prediction model of demand in supply chain is proposed. The learning algorithm of the prediction is also imposed to obtain better prediction of time series in future. In order to validate the prediction performance of recurrent neural networks, a ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید