نتایج جستجو برای: حاصل ضرب دکارتی گراف ها
تعداد نتایج: 395674 فیلتر نتایج به سال:
گراف کنسر گرافی است که راس هایش تمام زیر مجموعه های k عضوی از مجموعه 1 تا n است. که b-رنگ آمیزی گراف کنسر را بحث کرده ایم. همچنین b-رنگ آمیزی گراف منتظم از درجه d را بررسی می کنیم. بزرگترین افراز را برای چنین گرافی با درجه کمتر از شش به دست آورده ایم. ازطرفی گراف به دست آمده از حاصل ضرب دکارتی دو گراف را b-رنگ آمیزی کرده ایم . برای چنین رنگ آمیزی از مستطیل لاتین استفاده می کنیم.
در این پایان نامه ابتدا عدد غالبی معرفی شده سپس به معرفی عدد غالبی تام ،جفت شده وعدد غالبی رنگین کمان پرداخته ایم،سپس به معرفی حاصلضرب دکارتی و قاموسی به ارتباط بین عدد غالبی رنگین کمان با عدد غالب جفت شده و تام پرداخته ایم. همچنین در این رساله با معرفی چند نوع گراف خاص از قبیل گراف هراری و گراف خورشید وشبکه ها که خود حاصلضرب مسیرها هستند،مطالبی دربارهعدد غالبی 2-رنگین کمان آنها ارائه دادهایم.
عدد رنگی مساوی یک گراف با chi _=(g) نشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که مجموعه رئوس گراف g ا بتوانیم به n تا مجموعه ی مستقل افراز کرد و اختلاف اندازه رئوس در هر دو مجموعه ی مستقل(کلاس رنگی) حداکثر عدد یک باشد. آستانه رنگی مساوی گراف g را با chi ^*_=(gنشان داده می شود و عبارت است از کوچک ترین عدد صحیح n به طوری که گراف g برای همه ی r geq n، r-رنگ پ...
در این پایان نامه موضوع گراف های فازی و برخی از کاربردهای آن مورد مطالعه قرار گرفته است.در این رابطه مباحث مربوط به گراف های قطعی به گراف های فازی تعمیم داده شده است.فصل اول، مربوط به تاریخچه ی موضوع و بیان تعاریف اساسی گراف های فازی می باشد. در فصل دوم، اعمال روی گراف های فازی شامل: اجتماع، اتصال، حاصل ضرب دکارتی، ترکیب، حاصل ضرب نرمال و حاصل ضرب ترانسفوری آورده شده است. فصل سوم موضوع یکریختی ...
فرض کنید g یک گراف و ?:v(g)?? یک تخصیص آستانه ها به راس های گراف باشد، منظورازانتخاب مجموعه ی هدف برای گراف gعبارت از یافتن زیرمجموعه ای از راس های g است که بتواند به صورت پویا تمام راس های گراف را فعال سازد. کمترین تعداد راس های یک مجموعه ی هدف را با min-seed(g,?) نمایش می دهیم. در حقیقت، مساله ی انتخاب مجموعه ی هدف همان مونوپلی پویاست. در حالت کلی، این مساله نه تنها یک مساله ی np-سخت است، بلک...
برای مجموعه مرتب شده $ w = lbrace w_{1}, w_{2},...,w_{k} brace $ از رئوس و رأس $ v $ در گراف همبند $ g $، نمایش $ v $ نسبت به $ w $، بردار $ k $-تایی egin{center} $ c_{w} = (d(v,w_{1}), d(v,w_{2}),.., d(v,w_{k}) ) $ end{center} است که $ d(x,y) $ نمایش فاصله بین دو رأس $ x,y $ است. مجموعه $ w $ جداکننده ای برای $ ...
رای فابیلا مونروی و همکاران در (7) بصورت زیر به معرفی گراف نشان پرداخته اند. به ازای گراف g و عدد صحیح 1 ≤ k گراف نشان (fk(g گرافی است با مجموئه رئوس همه ی زیر مجموعه های k تایی از(v(g که در آن دو راس در (fk(g زمانی مجاورند که تفاضل متقارنشان یک زوج رأس مجاور در g باشد. در این پایان نامه به بررسی خواص از گراف نشان از جمله همبندی، قطر ، عدد خوشه ، عدد رنگی ، مسیر های همیلتنی ، و حاصلضرب دکارتی گ...
فرض کنید $c$ یک $k$-رنگ آمیزی معتبر از گراف همبند $g$ با کلاس های رنگی $v_1$، $v_2$، $ldots$، $v_k$ باشد. $pi:=(v_1,v_2,...,v_k)$ را افراز مرتب حاصل از این رنگ آمیزی در نظر بگیرید. کد رنگی رأس $vin v(g)$ یک $k$-تائی مرتب است که به صورت زیر تعریف می شود vspace*{3mm} $$c_{{}_pi}(v):=(d(v,v_1),d(v,v_2),ldots,d(v,v_k)).$$ اگر رئوس متمایز $g$ کدهای رن...
در این پایان¬نامه ابتدا ساختار مکعب¬های فیبوناچی را که شامل ساختار بازگشتی، دنباله درجه و نتایج شمارش است، بررسی می¬کنیم. هم¬چنین ویژگی مکعب¬های فیبوناچی که شامل شعاع، قطر و مرکز می¬باشد را بیان می¬کنیم سپس با استفاده از این مفاهیم مقدار دقیق عدد احاطه¬گری از مرتبه حداکثر 8، را پیدا می¬کنیم. همچنین برای مقادیر بالای 8 کران¬های بالا و پایین معرفی می¬کنیم.
مجموعه های مونوپلی دینامیک و مجموعه هایی از رأس ها در یک گراف که با هر دور گراف اشتراک دارند و به مجموعه های بی دورکننده موسوم هستند، در سال های اخیر جز فعالیت های پژوهشی در نظریه ی گراف به شمار می رود. مخصوصا مدل سازی و تحلیل شیوع و گسترش تأثیر در شبکه های اجتماعی نظیر یک بیماری یا یک باور مورد توجه پژوهشگران قرار گرفته است. بدین منظور مجموعه های مونوپلی دینامیک در نظریه ی گراف معرفی و مطالعه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید