نتایج جستجو برای: فضاهای باناخ هسته بازتولید
تعداد نتایج: 21541 فیلتر نتایج به سال:
در این پایان نامه، ابتدا با فضاهای هیلبرت هسته بازتولید و فضاهای باناخ هسته بازتولید آشنا خواهیم شد و فضاهای باناخ هسته بازتولید نیم ضرب داخلی را به کمک نیم ضرب داخلی و نگاشت دوگانی می سازیم. در ادامه قاب ها را به کمک نیم ضرب داخلی تعریف می کنیم. قضیه های کلاسیک را روی قاب ها و پایه های ریس به کمک نیم ضرب داخلی تعمیم می دهیم. هدف ما ایجاد قضیه نمونه برداری شانون در فضای باناخ است. وجود چنین توس...
قابها-p روی فضاهای باناخ توسیع مستقیمی از قابها روی فضاهای هیلبرت می باشند. برخلاف انواع دیگر قابها، نگاشت -قابها به دلیل خطی نبودن نگاشت دوگانی، خاصیت خطی و عملگری خود را از دست داده و مانند یک نگاشت غیر خطی -p قاب مانند -pقابها خواصی از نگاشت -p به دوگان آن عمل می کند. در این مقاله با گذاشتن شرایطی روی X از فضای باناخ ،$T^{perp}$با الحاق عملگر U بطور ضعیف پیوستگی، یکن...
در این پایان نامه یک روش عددی مبتنی بر فضای هسته ی بازتولید برای حل برخی معادلات با مشتقات پاره ای با شرایط مرزی غیر موضعی مانند معادلات شبه سهموی ، معادله ی تلگراف و مسئله ی معکوس برای معادله ی سهموی بررسی می شود. در واقع با به کار گرفتن هسته ی بازتولید، جواب تحلیلی را به صورت سری نامتناهی به دست آورده و یک مجموع متناهی از آن سری را به عنوان جواب تقریبی در نظر می گیریم. در آخر آنالیز هم...
در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.
در سال 1964 جیمز در مقاله ای تحت عنوان فضاهای باناخ به طور یکنواخت غیر مربعی، ثابت کرد اگر یک فضای باناخ شامل زیرفضای یکریخت با c_0 (l_1) باشد، آنگاه شامل کپی های تقریباً طولپا از c_0 (l_1) است. ما شکل متمم دار از این نتایج را بیان می کنیم. همچنین نشان می دهیم یک فضای باناخ دوگان که شامل یک زیرفضای یکریخت با l_1 [0,1] (l_? ) است باید شامل کپی های تقریباً طولپا از l_1 [0,1] (l_? ) باشد. همچنین نشا...
در این مقاله، نگاشت های چندمقداری یا روابط اندازه پذیر را معرفی و ارتباط بین تعاریف مختلف اندازه پذیری آنها را مطالعه می کنیم. موضوع نگاشت های چندمقداری اندازه پذیر در نظریه بازیها و نظریه کنترل کاربرد دارد. مطالب بیان شده را برای بررسی وجود جواب معادلات عملگری تصادفی غیرخطی در فضاهای باناخ به کار می بریم.
فرض کنی h یک فضای هیلبرت متشکل از توابع اسکالر مقدار روی یک مجموعه ی $x$ باشد. اگر برای هر x in xتابعک خطی delta_{x}:hlongrightarrow f}$ با تعریف delta_{x}(f)=f(x) برای هر fدرh یک تابعک خطی پیوسته روی فضای هیلبرت mathcal{h} باشد، آنگاه h یک فضای هیلبرت هستهِ ی بازتولید می نامند.ایده ی هسته ی بازتولید برای اولین بار در سال 1907 توسط gi{h5} روی مسائل مقدار مرزی برای توابع هارمونیک و غیرهارمونیک ...
: در این پایان نامه دو موضوع اساسی مورد بحث قرار گرفته است. فصل اول در رابطه با توابع ضربگر فضاهای باناخ روی گروه ها می باشد و در فصل دوم توابع جبرهای پیچشی مورد مطالعه قرار می گیرند. مهمترین نتیجه فصل اول این پایان نامه برای کلاس هم ارزی از توابع فضاهای باناخ پایای انتقال است. مهمترین نتیجه فصل اول این پایان نامه این است که برای کلاس هم ارزی ای از توابع فضاهای باناخ پایا است. نتایج فصل اول د...
هدف این پایان نامه مطالعه ی اثبات وجود یک نقطه ی ثابت برای یک نگاشت بسط ناپذیر احتمالا نقطه ای در فضاهای باناخ تقریبا بطور یکنواخت محدب است. در این پایان نامه قصد داریم نگاشتهایی از یک فضای باناخ به توی خودش را که مجانبا بسط ناپذیر میباشند را مورد مطالعه قرار دهیم.وجود نقاط ثابت این نگاشتها همانند همگراییهای ضعیف وقوی از انواع مختلف روشهای تکراری یافتن نقاط ثابت بطور وسیع مورد بررسی قرار گرفته ...
مفهوم مدوری خیلی از مفهوم مشتق پذیری دور نیست. در بعضی مقالات رابطه بین مدوری و همواری بررسی شده است. در این مقاله رابطه ی جدیذ بین مدوری و خیلی همواری را توصیف خواهیم کرد.یک فضای باناخ را مدور است در صورتی که وسط هر دو نقطه متمایز واقع بر کره واحد فضای باناخ در داخل گوی باز واحد آن فضا باشد. یک فضای باناخ را هموار گوییم در صورتی که نرم آن در هرنقطه ناصفر فضا مشتق پذیر گاتو باشد و آنرا خیلی همو...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید